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Abstract—Few-shot image classification aims at exploring
transferable features from base classes to recognize images
of the unseen novel classes with only a few labelled images.
Existing methods usually compare the support features and query
features, which are implemented by either matching the global
feature vectors or matching the local feature maps at the same
position. However, the few labelled images fail to capture all the
diverse context and intra-class variations, leading to mismatch
issues for existing methods. On one hand, due to the misaligned
position and cluttered background, existing methods suffer from
the object mismatch issue (Fig. EKa)). On the other hand, due to the
scale inconsistency between images, existing methods suffer from
the scale mismatch issue (Fig. Ekb)). In this paper, we propose
the Bilaterally-normalized Scale-consistent Sinkhorn Distance
(BSSD) to solve these issues. Firstly, instead of same-position
matching, we utilize the Sinkhorn Distance to find an optimal
matching between images, mitigating the object mismatch caused
by misaligned position. Meanwhile, we propose the intra-image
and inter-image attentions as the bilateral normalization on
Sinkhorn Distance to suppress the object mismatch caused by
background clutter. Secondly, local feature maps are enhanced
with the multi-scale pooling strategy, making Sinkhorn Distance
possible to find a consistent matching scale between images.
Experimental results show the effectiveness of the proposed
approach, and we achieve the state-of-the-art on three few-shot
benchmarks.

Index Terms—Few-shot, Sinkhorn Distance, Attention

I. INTRODUCTION

VER the past few years, convolutional neural networks
O (CNNs) have achieved tremendous breakthroughs in a
wide range of computer vision tasks, such as image classifi-
cation [[I]], object detection [2]], or semantic segmentation [3]).
Usually, it requires large-scale datasets to effectively train a
network. Collecting such large amounts of data is extremely
laborious and time-consuming, while in some cases like rare
species recognition or fine-grained classification [4], it is even
infeasible. On the contrary, the human visual system has
the ability to learn novel concepts with only one or few
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(b) scale mismatch

Fig. 1. Few-shot feature matching encounters two problems: (a) object
mismatch, i.e., the misaligned position (orange box) and background clutter
(blue box) will prevent the correct matching; (b) scale mismatch, i.e., the scale
inconsistency between images will cause incorrect matching.

instances . For example, humans (even children) can acquire
the concept of “banana” after seeing a single banana image
and be able to recognize future bananas. Mimicking this gen-
eralized learning ability of humans, few-shot learning (FSL)
aims to recognize instances of the unseen novel concepts (i.e.,
query set) with only few labeled instances (i.e., support set) by
exploring the latent patterns from the available seen concepts.

To tackle the few-shot learning problem, a variety of
algorithms have been proposed. These algorithms can be
divided into three types, i.e., metric-based [6]—{14], gradient-
based [15]-[19)], and transfer-based [20]-[23] methods.
Metric-based methods aim to learn a generalizable feature
space and utilize a distance function (such as Cosine or
Euclidean) to compute the similarities between support and
query images. Gradient-based methods try to learn a task-level
meta-learner that can quickly adapt model parameters to a new
task with few examples. Transfer-based methods consider a
simple transfer learning baseline by first pre-training a model
on the large meta-training classes. Then, a classifier is trained
on the meta-test classes to utilize the transferable knowledge
from the pre-trained model.

Early few-shot methods follow the common practice of
large-scale image classification to extract global feature
vectors from CNNs. However, global feature vectors often rely
on a large amount of training data to cover diverse context
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and intra-class variations, which is infeasible in the few-shot
problem. To ameliorate global feature vectors, a natural way
is to employ the local feature maps (e.g., by removing the
last pooling layer in CNNs) [24]]-[29]. Compared with global
feature vectors, local feature maps extract more meticulous
details of the image, thus amplifying the global feature vectors
with more discriminative and transferable information. Exist-
ing few-shot methods [26], [27]] adopt local feature maps in a
position-to-position manner, i.e., matching the corresponding
feature maps at the same position and aggregating the results.
Although this is simple and straightforward, due to the limited
data constraints in few-shot learning, it suffers from two
practical issues: object mismatch and scale mismatch (Fig. [I).
First, object mismatch refers to the issue that object parts
of the same category are not correctly matched. For example,
in Fig. [T(a), for a position-to-position matching method, the
left dog’s head (orange box in the left image) will match
the background (blue box in the right image) rather than
the correct right dog’s head (orange box in the right image).
The object mismatch issue is caused by the misaligned object
position and cluttered background. Current local feature based
methods do not address this issue well. For example, DC [27]]
learns a single classifier for each position without alignment,
thus ignoring the mismatch issue. DN4 [26]] only considers the
top-k matching in a class, which is sub-optimal for dealing
with the mismatch issue and it can be interfered by the
irrelevant background features. In this paper, we propose a
Bilaterally-normalized Sinkhorn Distance to solve the object
mismatch. At first, we model the local feature matching
problem in a Sinkhorn distance framework instead of the
position-to-position matching. Specifically, we calculate the
pairwise matching costs between the local feature maps of
the support image and query image. Feature matching is
formulated as a total costs minimization problem, which can
be solved efficiently by the Sinkhorn iteration. This way,
the optimal matching takes into account the whole feature
maps to correct the misaligned positions. Moreover, we devise
the intra-image and inter-image attentions for each position
to serve as the bilateral normalization on Sinkhorn distance.
This normalization explicitly diminishes the effect of the
background features and enhances the weights of the object
features, mitigating the object-to-background mismatch.
Second, scale mismatch refers to the issue that the objects
from the same category have inconsistent scales across various
images. For example, in Fig. [T(b), the dog in the left image is
approximately twice the scale of the right one. Scale mismatch
would cause adverse effects (e.g., degraded performance for
small objects) in various tasks, such as object detection [30],
image segmentation [31]]. However, it is seldom studied in few-
shot image classification. To solve this issue, we first apply the
multi-scale pooling to the original feature map of the support
image to generate local features representing multiple scales.
These local features are concatenated to replace the original
ones in the Sinkhorn distance. Then, we keep the query
features unchanged and compute the Bilaterally-normalized
Sinkhorn distance to find the optimal matching between the
query features and the multi-scale support features. This strat-
egy makes Sinkhorn distance possible to find and utilize the

consistent matching scale between support and query images.
Even when different object parts are disproportionately scaled
(non-rigid deformation), the concatenation makes it feasible to
find the correct parts combination across various scales.

All the proposed modules are incorporated in a general
framework to compute the distance between the support and
query images (Fig. [2). We refer to this distance as Bilaterally-
normalized Scale-consistent Sinkhorn Distance (BSSD). In
the experiments, we show the effectiveness of each component
of the proposed model. Our main contributions are summa-
rized as follows:

e We propose a novel Bilaterally-normalized Scale-
consistent Sinkhorn Distance (BSSD) to obtain a reliable
local feature matching for few-shot classification.

e We devise the intra-image and inter-image attentions
as the bilateral normalization on Sinkhorn distance to
diminish the cluttered background issue.

o The proposed Bilaterally-normalized Scale-consistent
Sinkhorn Distance is capable of finding the consistent
matching scale between images, thus addressing the scale
mismatch issue.

« We demonstrate the effectiveness and generalizability
of the proposed method via extensive experiments and
achieve the state-of-the-art on three benchmark datasets.

II. RELATED WORK
A. Few-shot Image Classification

In few-shot image classification, we are given abundant
examples from the base classes (seen), while the goal is to
learn to recognize novel classes (unseen) with few labeled
examples. Much efforts have been devoted to deal with this
task from three different views, i.e., metric-based methods,
gradient-based methods, and transfer-based methods.

Metric-based methods try to learn common image features
as well as a non-parametric classifier (e.g., Euclidean or
Cosine distance) that can generalize from base classes to
novel classes. Matching Network [6] introduces the concept of
support/query set and /N-way K -shot learning protocol. The
Cosine similarity is calculated between one query image and
all support images. Prototypical Network [[7] computes the Eu-
clidean distance between the query feature and the prototypes
of all class (a prototype refers to the mean of support features
belonging to the same class). Except for the simple distances,
neural networks can serve as a learnable distance function.
Relation Network [32] learns a deep distance metric from the
concatenation of query and support representations. FEAT [[14]]
utilizes a set-to-set transformation to make both the features
and the distances task-specific. The proposed Bilaterally-
normalized Scale-consistent Sinkhorn distance shares the same
spirit of learning a discriminative distance metric. However,
instead of using global feature vectors, we adopt the local
feature maps that is more consistent between seen and unseen
classes to mitigate the data-scarcity issue of few-shot learning.

Gradient-based methods aim to learn a general updating
rule that can quickly adapt model parameters to tackle a new
task with only few examples. MAML [15] proposes a model-
agnostic gradient updating rule to find a good intialization
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that can adapt quickly to any novel task with a few steps.
To avoid the computation of the costy Hessian matrix in
MAML, Reptile [[16] employees only first-order derivatives for
parameter updates. MetaOptNet [8] backpropagates though the
optimization of the SVM classifier while avoids second-order
derivatives in the feature backbone.

Transfer-based methods learn a pre-trained or self-
supervised representation on the entire base classes and then
train a classifier on top of this representation. Tian et al. [20]]
directly learn a linear classifier on top of a pre-trained embed-
ding and use self-distillation for further improvement. Meta-
Baseline [33]] verifies the effect of both classifier pre-training
and meta-learning.

Generalized few-shot learning. Besides the above few-shot
learning methods, recent works start to discuss more gener-
alized problems, such as domain-agnostic recognition [34],
[35]], utilizing extra semantic information [36], few-shot hu-
man—object interaction (HOI) [37] and novel discovery [38]],
[39]. For example, DGIG-Net [37] learns a task-oriented cross-
modal graph with a novel graph prototypes framework for few-
shot HOI. Our work is orthogonal to these generalized settings
and can be adapted for their problems.

B. Local Image Features

Local feature maps contain rich and meticulous information,
making it suitable for various computer vision tasks, such as
object detection [_2], visual retrieval [40]], semantic segmenta-
tion [3|], or fine-grained classification [4]. These tasks make
use of the spatial relations and detailed part representations
for accurate image-level or pixel-level prediction. Inspired by
their success, few-shot learning can benefit from the local
feature maps to enrich the global feature vectors which are not
well exploited under limited training examples. Actually, the
local part representations are more consistent and transferable
between the seen and unseen classes. DC [27]] trains a classifier
for each position in the feature maps but ignores the feature
alignment. TFH [28]] hallucinates the tensor features as data
augmentation and performs global average pooling (GAP) for
classification. DN4 [26] finds the top-k£ matching descriptors
between a query image and a class to calculate the image-to-
class similarity. Compared with these methods, the proposed
algorithm considers the whole local feature maps to find the
global optimal matching, leading to better feature alignment.

For local feature maps, attention techniques [41]] such as
class activation maps (CAM) [42] are widely-used to high-
light discriminative areas. In few-shot learning, SAML [43]]
modifies this activation by calculating the norm of local feature
maps to suppress the semantically irrelevant local regions. [44]]
proposes a loss function CAM-loss to boost the classification
performance in CNNs. We go a step further to compute both
the intra-image and inter-image attentions, suppressing the
clustered background of image pairs. Another good practice
for local descriptors is incorporating multi-scale information,
e.g., FCN [3]] and FPN [2]. In our method, the multi-scale
pooling is applied to the support feature map to obtain features
of multiple scales. These support features are concatenated to
match the original query features. The proposed strategy is

simple but non-trivial, since the concatenation offers a way
of matching local features across all scales to deal with the
disproportional object parts caused by non-rigid deformation.

C. Optimal Transport

Optimal transport aims at computing a minimal cost trans-
portation between a source distribution and a target distribu-
tion. Recently, it has been applied in various applications, such
as image localization [45]], domain adaptation [46], [47], gen-
erative model [48]] and graph matching [49], [50]]. The original
optimal transport problem (a.k.a. Earth Mover’s Distance) can
be solved with network simplex or interior point methods, both
of which require cubic complexity. In this paper, we formulate
local feature matching as an entropy regularized version of
the optimal transport problem (i.e., Sinkhorn distance [51]),
which only needs quadratic complexity. Moreover, all the
proposed components (i.e., optimal local feature matching, bi-
lateral normalization, scale-consistency) can be incorporated in
the Bilaterally-normalized Scale-consistent Sinkhorn distance
(BSSD) to form a unified end-to-end framework.

III. METHODOLOGY

This section presents the proposed framework. We first
introduce some notations and formalize the few-shot classifi-
cation problem. Then, we describe the Bilaterally-normalized
Scale-consistent Sinkhorn Distance (BSSD) framework includ-
ing optimal local feature matching, bilateral normalization, and
scale-consistency. Finally, we utilize the Sinkhorn algorithm to
optimize the local feature matching problem.

A. Problem Definition

In this paper, we consider the standard few-shot classifica-
tion setting. At first, we are given a labeled dataset consisting
of base classes Cpqse (a.k.a. seen classes) with an abundant
number of images in each class. Then, the objective is to
classify images in novel classes C,0¢; (a.k.a. unseen classes)
with only few images in each class. Since the base classes
and novel classes have no overlap, i.e., Cpose N Crover = 0,
it is difficult to directly fine-tune or transfer from the model
learned on base classes Cpgse [6], [13].

In order to break the non-overlapping constraint of
base/novel classes, an episodic-training paradigm was pro-
posed in [6]]. Instead of optimizing over mini-batches of train-
ing examples (x;, yi)f;l, episodic-training learns over mini-
batches of training tasks 7 = {(D"en Dtest)}B | Here,
Difrain and DEes represent the training set and test set of the
i-th task. Specifically, Df””” is called the support set, which
contains K images in each of the IV classes sampled from
Chase. D" is called the query set, which contains ) images
in the same N classes as the support set. (DI Dtest) jg
denoted as an N-way K-shot few-shot task. With episodic-
training, the model tries to generalize across multiple tasks
rather than fitting a specific classifier on Cpqse, thus breaking
the non-overlapping constraint. Due to this good property,
episodic-training has been widely-used in recent few-shot
learning methods [8[], [14f], [15], [26], [27], [52]. Therefore,
we also follow this good practice in the proposed algorithm.
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the local feature maps are first extracted with

the CNN. For the support feature map, multi-scale pooling is utilized to generate multi-scale local features while the query feature map keeps unchanged.
Then, the intra-image and inter-image attentions (section [[lI-B3) are calculated as bilateral normalization that re-weights the object and background features.
Finally, the concatenated features and attentions are incorporated in a unified optimization framework to calculate the Sinkhorn distance.

However, even equipped with episodic-training, few-shot
models still suffer from the data scarcity issue since for each
training task, only few (e.g., K = 1 or 5) images can be
used in each class. Few labelled images fail to represent the
complex intra-class variations, resulting the object mismatch
and scale mismatch problems. To tackle these problems, we
model few-shot feature matching as an optimal local feature
matching problem and then enforce the bilateral normalization
as well as scale-consistency to address the mismatch problems.

B. Bilaterally-normalized Scale-consistent Sinkhorn Distance

1) Preliminary: Our algorithm belongs to the metric-based
few-shot learning methods, which learn a discriminative metric
space by comparing the support and query images. While
existing methods extract global feature vector for direct com-
parison, we propose to extract local feature maps and utilize
the Sinkhorn distance for comparison, as shown in Fig.

Given an image x € R¥XWx3_ the convolution neural net-
work fg extracts the feature map as fy(x) € R"*%X¢ where
0 is the parameter of the network, h,w are the height/width
of the map, and c is the feature dimension. Here, fp(x) can
be reshaped to fy(x) € R™*¢ (m = hw) and viewed as a set
of c-dimensional local features. Given the support image xg
and query image x¢, the key issue is how to compare fj(xs)
and fy(xq) with a proper distance.

A straightforward extension from global feature meth-
ods [6], [[7] is to sum up the distances of local features from
the same position as follows:

ZD fo(xs)[

where D is a distance metric, such as Euclidean. Eqn. (1)
is similar to DC [27], while the difference is that DC trains
a classifier for each descriptor rather than direct distance
computation. Although simple, Eqn. (I)) and DC would suffer
from the object mismatch and scale mismatch issues as shown
in Fig. [l DN4 [26] improves the distance of Eqn. (1)) with k-
NN. For each feature ¢; from fy(x¢), its k-nearest neighbors
from fy(xg) are searched to compute the distance. Since DN4

(1

Distance(xg,Xq)

il, fo(xQ)1i]) ,

only considers &k support descriptors for each query feature, it
is suboptimal and may be sensitive to the choice of k.

2) Optimal local feature matching: Instead of computing
the same position distance or k-nearest neighbor distance, we
seek for a global optimal matching to calculate the local fea-
ture distance. At first, a cost matrix C € R™*™ is calculated
as C;; = D(fo(xs)[i], fo(xq)[j]) with C;; denoting the cost
of matching the i-th support feature and the j-th query feature.
The objective is to find an optimal matching M* that can
minimize the total cost of all pairwise matching:

M* = argn&/i{nZMUCij 5
ij
M > OaMl :p57MT1 =PQ,

s.t. 2

where 1 € R™*! is a vector of all ones, pg and pg are the
support and query probabilities to restrict M to nontrivial so-
lutions. The problem (2)) is an optimal transport problem [53].
Theorem 1 (Proposition 2.1 in [53])) For problem (2), if ps =
pPo = %1, there exists a solution M*, which is a permutation
matrix (the corresponding permutation 7 € Perm(m)).

According to Theorem 1, problem (2) finds an optimal
alignment 7* between the support and query features. This
way, the same parts (e.g., head) of the same object in two im-
ages are well-aligned, thus solving the object mismatch issue
caused by the misaligned object position. In contrast, existing
methods either utilize same-position matching (DC [27]) or
apply top-k matching (DN4 [26]), failing to find the optimal
matching.

3) Bilateral normalization: In Theorem 1, ps and pg are
assumed to be uniform distributions, which means that the
object and background features are treated equally. Therefore,
the cluttered background will interfere the correct object
matching. To alleviate this, we first compute the intra-image
attention with the extracted local features as follows:

pitna ] exp((fo(xs)[], fo(xs)[i])'/?)
° > e exp({fo(xs) [l fo(xs)l)1/2)

Here, (, ) denotes inner product. In a well-trained CNN, the
inner product of local features can serve as an indicator of

3)
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Fig. 3. Illustration of the intra-image and inter-image attentions.

object/background positions. This is because during training
time the object positions are more related to the loss function,
thus being trained to have larger feature values.

However, since the model is trained on base classes Cpgse
and applied to unseen novel classes C,ye;, the inner product
of local feature may stress more on base class objects while
neglect novel class objects. Thus, we propose the inter-
image attention to alleviate this. At first, the mean descriptor
po = = > i1 fo(xq)lj] is computed. Then, the inter-image
attention is calculated as:

et (o)l o) /)
P8 = s e @

Finally, the intra-image and inter-image attentions are com-
bined and normalized:

®)

attnf] _ P[] + ]
P S e+ e

The query attention pg‘“ is calculated in a similar way.
Then, p§", py" are utilized to replace original ps,pq in
Eqn. (2)), which serve as the bilateral normalization to reduce
the weights of background features. This alleviates the object-
to-background mismatch issue.

4) Scale-consistency: To address the scale mismatch is-
sue, we generate multi-scale local features for the support
image while keep query features unchanged. Specifically,
multiple pooling and up-sampling operations are applied
on fg(xg) to get a list of local features: [fy(xs)1 €
Rhuwixe  fy(xg)n € RPN®NX€] They are concatenated
to get the multi-scale support features fy(xg)ps € R¥:Piwixe,
The multi-scale design takes several intuitions into account: (1)
we use simple pooling instead of convolution or other param-
eterized modules, which is more efficient and avoids potential
overfitting caused by few-shot data; (2) the asymmetric scheme
and concatenation make it viable to search for a consistent
scale from support features to match the query; (3) even if the
object is disproportionately scaled, we can find a combination
across multiple scales for a better matching.

Given the bilateral normalization and scale-consistency, we
can now update the problem definition in Eqn. (Z). We update
C e R¥Mww with Gy = D(fy(xs)wslil. fo(xo) L)),
ps = pi‘lgttn’ and pqQ = pdllﬂ
Theorem 2 (Proposmon 3.4 in [53[)) In problem (E]) for
general ps,pq (ie, ps # 3 11 PO # L 1), the solution
M* contains no more than n + m—1 nonzem entries, where

Algorithm 1 Sinkhorn algorithm to solve problem (6)
Input: ps, pg, C, €, tmax
Initialize K = e €/ b+ 1,t <+ 0
while ¢ < t,,.x and not converge do

a=7ps/(Kb)
b =py/(K'a)
end while

Output: M° = diag(a)Kdiag(b)

From Theorem 2, we can see that with the proposed bilateral
normalization and scale-consistent modules, problem @]) still
owns good properties to induce a sparse matching matrix M*.
Since n # m, M™* can be seen as a relaxed matching matrix.
Compared with the original solution, the updated M* not only
solves the object mismatch by misaligned position, but also
addresses the background clutter and scale mismatch with
the proposed bilateral normalization and scale-consistency
modules. We combine all the proposed modules (optimal local
feature matching, bilateral normalization, scale-consistency) in
the unified optimal transport problem (Eqn. (2)).

C. Optimization with Sinkhorn Algorithm

Problem (2)) can be solved with network simplex or interior
point methods. However, it requires a high complexity of
O(m3logm). To reduce the complexity, we solve an entropy-
regularized approximation of Eqn. (2):

M€ = arg ml\}ln Z M;;C;; +eH(M),
ij

st. M>0,M1=ps,M'1=pg, (6)
where H(M) = >, M;;(log M;; —1) is the negative entropy
and € > 0 is the regularization parameter. Problem () is
strongly convex and can be solved using Sinkhorn algo-
rithm [51]] as shown in Algorithm
Remark 1 (Approximation Analysis [54]) For the sake of
simplicity, we assume n = m. The convergence analysis can
be performed as follow: by setting e = %™ |C|, =
max;; |C;;| < L, Algorithm 1| runs in O(m 2L3(log m)T3)
time to ensure that > M<C < > M*C + 7. In other
words, Eqn. (6) computes a T-approximation of Eqn. (3) in
O(m*L3(logm)T~3) operations.

Complexity Analysis. According to Remark 1, the time
complexity of solving Problem (€) with Algorithm 1 is
O(m?logm). Calculating the cost matrix C needs to call m?
times the distance function D. So, the overall complexity of
our method is O(m?logm + m?c).

There are several benefits by introducing entropy regular-
ization. First, the complexity is decreased by an order of
magnitude but the solution M€ is still near to the original
M* for small e according to Remark 1. Second, Algorithm
only involves simple matrix operations, which is efficient
and differentiable for end-to-end training in CNNs. Third,
the regularization has the potential effect of preventing over-
aggressive matching, thus improving the generalization ability.

Once MF° is obtained, the distance can be computed:

ZM i s (7)

Distance(xg,xq)
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which is called Bilaterally-normalized Scale-consistent
Sinkhorn Distance (BSSD). The predicted probability for x¢
is calculated as:
exp(Distance(xs, , XQ)/T)
=k = 8
Pve xe) > exp(Distance(xs,,,xq)/7) ®
where 7 is the temperature similar to recent work [[14], [33],
[55]], x5, is the support image of class k, the average is applied
for more than one images.

IV. EXPERIMENTS

In this section, we first describe the benchmark datasets and
implementation details. Then ablation study is performed to
verify the effectiveness of each proposed component, followed
by the qualitative results to provide further intuitions. At last,
we compare with the state-of-the-art methods.

A. Datasets

We perform experiments on three common benchmarks:
minilmageNet [6], tieredlmageNet [56], and FC100 [57].

minilmageNet was originally proposed in [6]. It is a subset
of ImageNet ILSVRC-2012 and contains 60,000 images of
resolution 84 x 84, uniformly distributed over 100 classes. We
adopt the common split in [58] to get 64,16, 20 classes for
training, validation and test, respectively.

tieredIlmageNet was proposed in [56] as a large-scale few-
shot benchmark. It is also a subset of ImageNet ILSVRC-2012,
containing 608 classes from 34 super-categories, which are
then split to 20, 6, 8 super-categories, resulting in 351,97, 160
classes as training, validation and test set respectively. Simi-
larly, the image size is 84 x 84. Since base classes and novel
classes come from different super-categories, the semantic gap
between training and test phase is larger than minilmageNet.

FC100 is a few-shot version of CIFAR-100 originally
proposed in [57]. Similar to minilmageNet, it has 60,000
images uniformly distributed over 100 classes. Similar to
tieredlmageNet, the 100 classes of FC100 are grouped into 20
superclasses, with 12 (60 classes) for training, 4 (20 classes)
for validation and 4 (20 classes) for test.

B. Implementation Details

For a fair comparison with previous works, we consider two
commonly used convolutional neural networks as the feature
backbone: (1) A 4-layer convolution network (ConvNet) with
64 filters in each layer, following the same architecture in [6],
[7]], [14] and (2) A 12-layer residual network (ResNet) used
in [8]], [14]. To get the local feature maps, we remove the last
pooling layer of the networks. Concretely, an image of size
84 x 84 results in a feature map of 5 X 5 x Cﬂ i.e., 25 local
features. Then, we apply a multi-scale up/down-sampling on
the support image to get feature maps of {10 x 10,5 x 5,3 X
3,1x 1} (except where stated otherwise) and concatenate them
to obtain 135 local features.

As a common practice in state-of-the-art literature [14],
[33], we apply a feature pre-training step followed by a

I'C is feature dimension. C is 64 for ConvNet and 640 for ResNet

episodic meta-training step. In pre-training step, we utilize
an Adam optimizer with the initial learning rate of 0.002 for
ConvNet. And for ResNet, we use SGD with momentum and
set learning rate to 0.001, momentum to 0.9. In meta-training
step, the learning rate is scaled by a factor 0.1. In all stages, the
weight decay is fixed as 0.0005. At meta-test time, we follow
the new and more trustworthy evaluation setting [[14]], [27] to
randomly sample 10,000 N-way K-shot tasks instead of 600
in previous setting. The average accuracy and 95% confidence
interval are reported. The distance metric D is instantiated as
D(u,v) = 1 —u'v/||lu||||v|. The regularization ¢ is set to
0.05, max iteration ¢« is set to 10. The softmax temperature
T in meta-training and meta-test stage is set to 0.02.

C. Ablation Study

In this subsection, we perform various experiments on
minilmageNet to show the effectiveness of our BSSD method.

Ablation on Sinkhorn distance and feature sizes. To
investigate the effect of Sinkhorn distance on various lo-
cal/global feature sizes, we re-implement two popular meth-
ods: ProtoNet [7] and MatchingNet [[6] with various feature
map sizes. For local features, we directly flatten the feature
map to be a feature vector, which is a straightforward way
of applying local features. In addition, we compare with two
recent local feature methods, i.e., DN4 [26] and DC [27].
For our method, we report the plain version here, i.e., only
preserving the Sinkhorn distance module and removing both
the bilateral normalization and the scale-consistency modules.
This helps to study the pure effect of optimal local feature
matching strategy induced by Sinkhorn distance. To ensure
a fair comparison, we re-implement all methods to apply a
feature pre-training step followed by a meta-training step. All
methods utilize the same ConvNet and ResNet architecture,
except for the last pooling layer that can generate various
feature map sizes. To get a feature map of size 10 x 10, we
remove the max-pooling accompanying the last convolution
layer for ConvNet and ResNet.

The results are shown in Table Il First, simple flattening
local features for ProtoNet [7] and MatchingNet [6] does not
yield consistent improvements against global features. Due
to object mismatch, the simple flattening may introduce in-
consistent feature comparison, thus harming the performance.
Second, DN4 [26]] and Dense [27] are comparable or slightly
better than global feature matching of ProtoNet [7|] and Match-
ingNet [7]], indicating that their strategies for local feature
matching are beneficial but sub-optimal. Third, the proposed
BSSD shows consistent and significant improvements against
all local and global methods, which corroborates the effective-
ness of optimal local feature matching by Sinkhorn distance.
Fourth, by increasing feature map size from 5 x 5 to 10 x 10,
DN4, DC and BSSD all gain further improvements for 1-shot
setting due to the scarcity of training images. For 5-shot setting
with more training images, BSSD continues to increase for
larger map size while DN4 and DC do not. We conjecture
that with more training images, local features of 10 x 10 are
nearly saturated and fail to offer additional information.

Effectiveness of each component. We then study the
benefits of each of the proposed components, including intra-
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TABLE I

ABLATION STUDY ON VARIOUS DISTANCE AND FEATURE SIZES. FOR A FAIR COMPARISON, WE RE-IMPLEMENT ALL METHODS WITH THE SAME
PRE-TRAINED BACKBONE. IN OUR BSSD METHOD, THE PLAIN VERSION IS REPORTED HERE, i.e., ONLY PRESERVING THE SINKHORN DISTANCE MODULE
AND REMOVING BOTH THE BILATERAL NORMALIZATION AND THE SCALE-CONSISTENCY MODULES.

. . ConvNet ResNet
Method Distance Feature Size T-shot 5 shot Toshot 5 shot
Global 1x1 52.61 71.33 62.39 80.53
ProtoNet [7] Euclidean Local 5x5 51.97 70.60 62.05 79.76
Local 10x10 51.14 70.06 62.33 79.50
Global 1x1 52.87 67.49 63.87 78.72
MatchingNet [6] Cosine Local 5x5 53.66 66.68 62.69 77.95
Local 10x10 53.16 67.78 63.74 77.56
- . Local 5x5 53.15 70.64 63.71 78.16
DN4 [26] Cosine Local 10x10 54.09 71.60 64.13 7755
- . Local 5x5 53.54 71.10 63.92 80.39
DC 27 Euclidean Local 10x10 54.39 70.77 63.95 79.81
. Local 5x5 55.03 72.28 65.06 81.62
BSSD (ours) Sinkhorn Local 10x10 55.61 72.39 65.88 81.76
TABLE II
EFFECTIVENESS OF THE PROPOSED COMPONENTS ON miniIMAGENET.
Intra-Attention Inter-Attention Scale-Consistency i -sho(tjonVNeSt-sho T 1_ShOtResNet5_ShO :
55.03 72.28 65.06 81.62
Sy - - - 000 5548 ~ T 73.04 6554 8223
v 55.43 72.95 65.63 82.17
v v 55.76 73.13 65.90 82.34
T T T T T T T T T T T T v T 5540 ~ 7292 © T 6613~ 8238
v v 56.09 73.03 66.39 82.69
v v 56.01 73.16 66.79 83.09
v v v 56.53 73.44 67.28 83.48
TABLE III
PERFORMANCE WITH VARIOUS FEATURE MAP SIZES ON minilMAGENET. f— mia:
ConvNet ResNet v il
. . onviNel €SINE I Concat
Query size Support size 1-shot 5-shot 1-shot 5-shot
5 5 55.76 73.13 65.90 82.34 =70
10 10 56.21 73.18 66.52 82.71 8
5,3,1 5 55.93 73.08 66.72 82.86 §
10,5,3,1 5 56.21 73.33 66.94 83.08 <
5 53,1 56.01 73.14 66.77 82.73 60
5 10,5,3,1 56.53 73.44 67.28 83.48
53,1 53,1 56.03 73.19 66.60 83.10
10,5,3,1 10,5,3,1 55.98 73.30 66.47 82.74

image attention, inter-image attention and scale-consistency.
From Table [l we can see that either intra-image attention or
inter-image attention alone can obtain accuracy improvements
over the baseline model (plain Sinkhorn distance). Combing
the two attentions introduces further improvements, showing
that they are complementary. The scale-consistency with nei-
ther intra-attention nor inter-attention attention can improve
the performance of of the plain baseline, corroborating its
effectiveness to address the scale mismatch issue. When both
attentions and scale-consistency modules are applied, the
performance outperforms each single module, which verifies
their collaboration. The final model (i.e., BSSD) obtains much
better accuracy than plain Sinkhorn distance (+1.5% in most
cases) and all other variants. The above analysis indicates
that all the proposed components are complementary and
indispensable in the proposed BSSD framework.

Influence of different scales. In our method, we apply
an asymmetric multi-scale design, i.e., keeping query map
size as 5 x 5 and changing support map size to {10 x

Conv-1shot Conv-5shot Res-1shot Res-5shot

Fig. 4. Accuracy with different multi-scale strategies. The proposed “Concat”
achieves the best performance on all settings.

10,5 x 5,3 x 3,1 x 1}. This asymmetric multi-scale design
can be explained from several perspectives. From an accuracy
view, in Table the proposed size configuration achieves
the best performance among all configurations. This is due
to the effective up/down-scaling of the support map, which
makes our method possible to capture both the zooming-in and
zooming-out relationships between support and query images.
Therefore, the scale mismatch issue is well-addressed. From an
efficiency view, the proposed size configuration balances the
accuracy and efficiency. Our configuration has a complexity
of O(25 x 135) with the quadratic Sinkhorn algorithm, which
is relatively small among all sizes. Moreover, the multi-scale
operation is applied only on the support maps rather than
on the query maps. This choice is derived from a practical
consideration. In few-shot setting, the support images are the
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Fig. 5. Accuracy with different values of the parameters ¢ and tmax using
ConvNet on minilmageNet.
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Fig. 6. Performance of various shots on minilmageNet and FC-100.

training set whose number is supposed to be small (e.g., 1 or
5), while the query images are the test set whose number is
varying and usually much larger.

Different scale-consistency strategies. Given the multi-
scale support maps, there are several strategies to apply scale-
consistent Sinkhorn distance, such as concatenate features of
all scales (i.e., BSSD) or compute distance in each scale and
then aggregate with the Max/Min/Mean operation. The results
are shown in Fig. [ The proposed “Concat” achieves the best
performance on all settings, corroborating its effectiveness.
Since objects can be disproportionately scaled during non-rigid
deformation, “Max”, “Min” and ‘“Mean” are unable to handle
this within the same scale. In contrast, with concatenation, the
query image can search for a combination of various scales
from the support image, which potentially addresses the non-
proportional object scaling issue.

Influence of the parameters e and ¢,,,x. To investigate the
hyper-parameter €, we change it from 0.001 to 0.5 for ConvNet
on minilmageNet. From Fig. [5[a), we can see that accuracy
is quite stable w.r.t €. The best performance is achieved when
€ = 0.05. The accuracy drops quickly when ¢ = 0.001 as a
too small e leads to numerical issue. Similarly, we vary the
parameter ¢,y from 1 to 40 and report the results in Fig. [5[b).
It can be seen that our method is stable w.r.t ¢,,x and the best
result is obtained around %, = 10.

Performance of various shots per class. To demonstrate
the universality of our method, we evaluate the performance of
our method and the second best in Table [[V] (i.e., FEAT [14])
by increasing K from 1 to 100. With the gradual increasing
of K, the few-shot classification task approaches the general
image classification task. From Fig. [6] it is shown that the
accuracy acutely increases from 1-shot to 5-shot and then
gradually increases until 100-shot. For all different shots,
our method surpasses FEAT with a noticeable margin, which

(2)

(®)

©

(d

v
Inter Intra+Inter

Intra

Fig. 7. Visualization of the intra-image and inter-image attention maps.

indicates the better performance of conducting both the few-
shot and general image classification tasks.

D. Qualitative Results

Intra-image and inter-image attentions. The intra-image
attention focuses on the objectness of an image, while the
inter-image attention considers if the query image contains
the same object as the support image. In Fig. [/(a), the intra-
image attention map shows high activations for both the bowl
and steel nail, but the inter map only focuses on the bowl
(i.e., target object). Their combination decreases the non-target
nail activations. Similarly, in Fig. [7b), the non-target human
face is also diminished. In some cases, the two attentions are
complementary. In Fig. [/c), the intra map focuses on the
eyes area while the inter map focuses on the nose area. Their
combination strengthens each individual map by activating
both the eyes and nose. Similarly, in Fig. [/(d), the intra map
activates the tail part while the inter map activates the head
part. Their combination focuses on the whole ant body. The
proposed attentions can collaboratively highlight the target
objects, then guide the object matching.

Optimal matching visualization. In Fig. [§] we show the
top 2 matching as well as the corresponding optimal matching
matrix M. In Fig.[8{a), the two guitars have similar scales, thus
the matching boxes having the same size. In Fig.[8(b) and [§(d),
the left and right images have different zoom in/out options,
but our algorithm successfully finds the proper matching scales
to focus on the same object parts. In Fig. [§[c), the head and
leg of the right lion are unevenly scaled due to viewpoint
changes. The proposed BSSD handles this issue by seeking
for the consistent scales from multiple support scales to match
the query scale.

The optimal matching matrix M sparsely activates the
corresponding areas, which is consistent with the Theorems
in Section [[II-B} Moreover, if the objects have similar posi-
tions (Fig. Eka)), the resulting M shows diagonal activations,
otherwise (Fig. [B(b) and [§[d)) M shows different activations.
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TABLE IV
COMPARISONS WITH THE STATE-OF-THE-ART METHODS ON miniIMAGENET AND tieredIMAGENET. WE SHOW THE MEAN ACCURACY AND 95%
CONFIDENCE INTERVAL.

minilmageNet

tieredlmageNet

Method Backbone 1-shot 5-shot 1-shot 5-shot
ResNet-12 61.65+0.15 76.36%0.10 63.08£0.15 80.26£0.12
ResNet-12 62.6410.66 78.83+0.45 66.22+0.75 82.79+0.48
ResNet-12 63.8540.81 81.57+0.56 - -
ResNet-12 63.17+0.23 79.261+0.17 68.62+0.27 83.29+0.18
ResNet-12 58.504-0.30 76.704-0.30 - -
ResNet-12 62.64+0.61 78.63+0.46 65.99+0.72 81.56+0.53
ResNet-12 62.024-0.63 79.644-0.44 69.7440.72 84.4140.55
ResNet-12 66.781+0.20 82.05+0.14 70.80£0.23 84.79+0.16
ResNet-12 61.4141.87 76.1140.92 - -
T 77 7 T ResNet-18 T T T T 51874077 © T T T 75.684063 T T T - T T T T T T T ST
ResNet-18 61.04+0.21 77.0140.15 - -
ResNet-18 64.12140.82 80.5110.13 68.41+0.39 84.28+1.73
ResNet-18 62.85+0.20 80.0240.14 69.09+0.22 84.58+0.16
ResNet-18 65.0710.82 80.8110.61
T WRN228-10~ ~ ~ 7 ¢ 61.76£008 ~ ~  ~ 71591012 ~ " " " 66334005~ T~ BI4A40097
WRN-28-10 59.60+0.41 73.7440.19
Boosting [55] WRN-28-10 64.031+0.46 80.68+0.33 70.53i0.51 84.98i0‘36
MixtFSL [68 WRN-28-10 64.314:0.79 81.66+0.60 68.61+0.91 84.08+0.55
BSSD (Ours) ResNet-12 67.28+0.20 83.48+0.14 71.55+0.23 86.13+0.16
TABLE V on all three benchmarks. Among the baselines, TFH-ft 28]
COMPARISONS WITH THE STATE-OF-THE-ART METHODS ON FC100. generate tensor features and DC applied dense classifiers
Method Backbone Toshot 5shot on each local feature. Since none of them addresses the mis-
SimpleShot [65] ~ ResNet-10 ~ 40.13+0.18  53.63+0.18 match issues, they obtain inferior accuracy. For the backbone,
TADAM ResNet-12  40.1040.40  56.10£0.40 ;
MetaOptNet ResNet-12 41102060  55.5040.60 although we employ a small network (i.e., ResNet 12), our
ResNet-12  42.6040.70  59.1040.60 algorithm outperforms the methods with a larger backbone
ResNet-12  42.0440.17  57.05+0.16 :
ResNet.12 45104180  576010.90 structure such as ResNet-18 or WideResNet-28.
ResNet-12  44.8940.63  60.70+0.67
BSSD (Ours) ResNet-12 47.13+£0.26  63.59+0.25 V. CONCLUSION

Ili

5x5 3x3 1x1

support size 1()><10

(d)

Fig. 8. Visualization of the top matching (same box colors denote a matching
pair) and the optimal matching matrix M.

E. Comparison with the State of the Art

Finally, we compare the proposed BSSD with the recent
state-of-the-art methods. We report the 5-way 1-shot and 5-
way 5-shot results on 3 popular benchmarks: minilmageNet,
tieredlmageNet, and FC100. As shown in Table m and Ta-
ble [V] our algorithm outperforms the state-of-the-art methods

In this paper, we propose the Bilaterally-normalized Scale-
consistent Sinkhorn Distance (BSSD) to deal with the few-
shot classification problem. Specifically, we utilize the more
discriminative local feature maps to replace the widely-used
global feature vectors, leading to more consistent and trans-
ferable features. Direct local feature matching encounters two

| practical issues: object mismatch and scale mismatch, which

are caused by misaligned position, cluttered background, and
inconsistent object scales. To address these issues, we propose
three novel modules: optimal local feature matching, bilateral
normalization, and scale-consistency, which are incorporated
in a unified end-to-end BSSD framework. Extensive experi-
ments show the effectiveness of each designed module, and
we achieve the state-of-the-art on three benchmark datasets.
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