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Abstract. With the emergent attentive property of self-supervised Vi-
sion Transformer (ViT), Normalized Cuts (NCut) has resurfaced as a
powerful tool for unsupervised dense prediction. However, the pre-trained
ViT backbone (e.g ., DINO) is frozen in existing methods, which makes
the feature extractor suboptimal for dense prediction tasks. In this pa-
per, we propose using Differentiable Normalized Cuts for self-supervised
dense feature learning that can improve the dense prediction capability of
existing pre-trained models. First, we review an efficient gradient formu-
lation for the classical NCut algorithm. This formulation only leverages
matrices computed and stored in the forward pass, making the backward
pass highly efficient. Second, with NCut gradients in hand, we design a
self-supervised dense feature learning architecture to finetune pre-trained
models. Given two random augmented crops of an image, the architec-
ture performs RoIAlign and NCut to generate two foreground masks of
their overlapping region. Last, we propose a mask-consistency loss to
back-propagate through NCut and RoIAlign for model training. Experi-
ments show that our framework generalizes to various pre-training meth-
ods (DINO, MoCo and MAE), network configurations (ResNet, ViT-S
and ViT-B), and tasks (unsupervised saliency detection, object discov-
ery and semantic segmentation). Moreover, we achieved state-of-the-art
results on unsupervised dense prediction benchmarks.

1 Introduction

Dense prediction aims at understanding detailed aspects of an image, encom-
passing tasks such as object detection [52], segmentation [26, 37], and corre-
spondence [18,29]. Modern approaches rely on supervised learning that requires
high-quality annotations on bounding boxes, segmentation masks and keypoints,
which are laborious to acquire. Moreover, supervised learning is trained on a pre-
defined set of classes, limiting their application in real-world scenarios [50].

In this paper, we focus on unsupervised dense prediction with no human an-
notation. Recent advances deal with this problem building on two standard tech-
niques: self-supervised Vision Transformer (ViT) [7] and Normalized Cuts [32].

First, distillation with no labels (DINO) [7] found that self-supervised ViT
contains sensible object boundaries in the self-attention of the [CLS] token in last
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Fig. 1: (a) Existing methods [28, 45] feed DINO [7] (frozen) features to classical Nor-
malized Cuts algorithm [32], and apply post-processing. (b) We propose using Differen-
tiable Normalized Cuts that can back-propagate the gradient from the Self-supervised
Dense Learning loss to finetune DINO for better dense prediction.

layer. Motivated by this emergent property, LOST [35] adopted the key features
of the last attention layer to build a patch similarity graph for unsupervised
object discovery. Following LOST, the same features were utilized by DSS [28]
and TokenCut [45] to solve more dense prediction tasks such as unsupervised
saliency detection and unsupervised video segmentation. Pre-trained DINO has
become the default feature extractor for dense prediction [5, 31,34,36].

Second, instead of directly using self-attention from DINO, TokenCut [45]
and DSS [28] discovered that applying the classical Normalized Cut [32] algo-
rithm on DINO features achieved state-of-the-art performance on unsupervised
dense prediction tasks. Specifically, an image graph was constructed from the
key features of DINO. Then, image segmentation was formulated as a minimum
graph cut problem. According to Normalized Cuts, the solution (i.e., segmen-
tation mask) is the second smallest eigenvector of the Laplacian matrix of the
image graph. Based on this segmentation mask, further post-processing proce-
dures [2, 36,45] can be applied to obtain a refined mask.

Combining the above two techniques, the existing pipeline for dense predic-
tion is shown in Fig. 1(a). Existing methods directly take the pre-trained DINO
model and freeze its weights, thus limiting the capacity for dense prediction.
DINO is trained on the global feature level, so it is not aligned with dense pre-
diction tasks requiring pixel-level understanding. In this paper, we try to bridge
the gap between the pre-trained self-supervised model (e.g ., DINO) and dense
feature representation. Our framework is shown in Fig. 1(b), including two com-
ponents: Differentiable Normalized Cuts and Self-supervised Dense Learning.

Normalized Cuts [32] involves an optimization problem of the generalized
eigenvalue system, so it is not straightforward to back-propagate gradients from
the solution (i.e., segmentation mask) to the input (i.e., image features). We pro-
pose to use a Differentiable Normalized Cuts layer, which wraps up Normalized
Cuts in the forward pass and derives an efficient formulation for the backward
pass. Our approach starts with the traditional differential of an eigenvector ac-
cording to Magnus et al. [27], which contains a time-consuming pseudo-inverse
operation. To improve the running time we use eigendecomposition [1] to evalu-
ate the pseudo-inverse using only matrices computed and stored in the forward
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pass. In this way, the Differentiable Normalized Cuts layer can be plugged into
deep networks for efficient and effective training.

For Self-supervised Dense Learning, we design an effective architecture to
utilize the foreground masks from Normalized Cuts, which have not been ex-
plored previously in self-supervised learning. Specifically, we take two random
augmented crops of an image and feed them to a shared encoder for feature
extraction. The extracted features then undergo RoIAlign and Normalized Cuts
to generate foreground masks for the overlapping regions of the two crops. A
mask-consistency loss is calculated on the overlapping masks, and gradients are
back-propagated through RoIAlign and, importantly, Normalized Cuts to update
the encoder weights. To combat the issue of collapse in self-supervised learning,
we enforce structural regularization tailored for dense feature learning.

Starting from a pre-trained model, our framework only needs to fine-tune for
two epochs on ImageNet [12], to unlock the dense prediction capability. In the
experiments, we have verified the effectiveness of our framework for dense predic-
tion on several diverse tasks (unsupervised saliency detection, object discovery
and semantic segmentation), pre-training methods (DINO [7], MAE [19] and
MoCoV3 [9]), and network architectures (ResNet [22], ViT-S and ViT-B [13]).

The contribution of our paper is summarized as follows:

– We introduce Differentiable Normalized Cuts to the context of unsupervised
dense prediction. It enables efficient back-propagation through Normalized
Cuts with matrices necessarily computed in the forward pass.

– We design a Self-supervised Dense Learning architecture to improve the
dense prediction capability of the pre-trained self-supervised ViT model.

– Our framework generalizes to diverse dense prediction tasks, pre-training
methods and network architectures. The state-of-the-art results are achieved
on unsupervised prediction benchmarks.

2 Related Work

Self-supervised and Dense Contrastive Learning. The recent success of
self-supervised learning adopts a contrastive learning scheme: two random aug-
mented views of the same image are regarded as positive pairs. A large body of
work was proposed, such as SimCLR [8], BYOL [17], MoCo [9,20], SimSiam [11],
DINO [7], and SwAV [6] to name a few.

However, these methods learn at the global feature vector level, which is
not optimal for dense prediction tasks. Therefore, dense contrastive learning
was proposed to learn at pixel-level [44, 47] or region-level [46, 49]. For exam-
ple, DenseCL [44] extended MoCo-v2 [10] to perform dense pairwise contrastive
learning at the pixel level. DenseSiam [49] proposed Dense Siamense Network and
leveraged both pixel consistency and region consistency for dense feature learn-
ing. Instead of operating on pixel- or region-level, our method utilizes the intrin-
sic structure of an image (i.e., segmentation mask from Normalized Cuts [32])
and proposes an efficient formulation to back-propagate Normalized Cuts.



4 Y. Liu and S. Gould

Normalized Cuts and Unsupervised Dense Prediction. Normalized Cuts
(NCut) [3, 23, 32] is a traditional segmentation method, which reframes image
segmentation as a graph partitioning problem solved via an eigenvalue system.
Based on the unsupervised object attention from self-supervised ViT [7] (e.g .,
DINO), recent works [28,32] unleashed the strong performance of NCut for dense
prediction tasks, including unsupervised segmentation and localization. Their
pipeline is shown in Fig. 1(a): they employ a pre-trained DINO as the feature
extractor and apply NCut to generate the initial segmentation mask, which is
then post-processed using different strategies.

Other dense prediction methods [5,31,36] follow the same pipeline as Fig. 1(a),
but they replace NCut by training a post-processing module on an extra DUTS-
TR [40] dataset. For example, FOUND [36] adopted a frozen DINO to discover
the background from a selected seed, and train a lightweight 1 × 1 convolution
layer to refine the DINO dense features. MOVE [5] used a frozen DINO as the
segmenter and a frozen Masked AutoEncoder (MAE) [19] as the inpainter, and
then performed adversarial training on inpainted images. Different from exist-
ing methods, which might be limited by the frozen DINO, we devise a general
framework to improve the dense prediction capability of pre-trained models. Our
framework requires only a few epochs of training on ImageNet.
Backpropagation through Normalized Cuts. Backpropagation requires dif-
ferentiating the eigendecomposition (ED) or singular value decomposition (SVD)
problem. Several works have been proposed to solve the problem [23,27,30,41,42].
An early work by Magnus et al. [27] derived the differential of eigenvalues in-
volving a pseudo-inverse calculation. Then, Papadopoulo et al. [30] proposed to
estimate the Jacobian of the SVD using an exact analytic technique. Ionescu et
al. [23] studied matrix backpropagation and derived partial derivatives for both
SVD and symmetric ED problems. To improve the numerical stability, Wang
et al. [41] proposed a hybrid strategy for differentiable ED: utilize SVD dur-
ing the forward pass and derive the gradients from the Power Iteration (PI).
This was further improved in later work [42] by using Taylor expansion to re-
place PI during the backward gradient derivation. Different from existing works,
we focus on the application of unsupervised dense prediction, which has not
been explored with differentiable NCut. Instead of using supervised loss in prior
works [23, 24, 41], we proposed a self-supervised loss to compute the gradients,
entailing practical designs such as stop gradient and asymmetric architecture.

3 Methodology

3.1 Background

Self-supervised ViT. While the original ViT model [13] was trained with im-
age labels, DINO [7] found that segmentation masks emerge after self-distillation
training with no labels. Specifically, object masks appear in the self-attention of
the last layer [CLS] token. This emergent property has been utilized by recent
unsupervised object segmentation and localization methods [28,35,45]. However,
instead of using self-attention, they adopt the key features from the last layer.
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Shared 
Weights

Fig. 2: Overview of our Self-supervised Dense Learning framework. (Above)
At first, two random crops of an image are augmented (with t1, t2) and fed into a shared
Image Encoder (e.g ., DINO [7]), followed by asymmetric Projector g and Predictor
q to extract dense features f1,f2. Then, we use RoIAlign [21] to get the features of
overlapping areas, which are then input to the proposed Differentiable Normalized Cuts
Layer. Normalized Cuts [32] algorithm generates the foreground masks movlp

1 ,movlp
2 .

Finally, a mask-consistency loss is used to train the model. (Bellow) Detailed forward
and backward computation of the Differentaible Normalized Cuts Layer.

Formally, given an image I ∈ R3×M×N , the key feature f ∈ RC×M/P×N/P

is extracted from a ViT encoder Φθ, where C is the feature dimension and P is
the downsampling factor. An affinity matrix is constructed as

W = max{ff⊺, 0} ∈ R
MN
P2 ×MN

P2 , (1)

where max is applied elementwise. Then, W can be used as the adjacency matrix
in Normalized Cuts [32] to generate the foreground mask.

Normalized Cuts (NCut). Shi and Malik [32] framed image segmentation as
a graph cut problem. For an image, the graph G = (V,E) is constructed with
the adjacency matrix W = {w(u, v) : (u, v) ∈ E}. Then, image segmentation
translates to a graph partition problem: removing edges to divide V into two
disjoint sets, A,B,A ∪ B = V,A ∩ B = ∅. The total weight of removed edges is
called the cut:

cut(A,B) =
∑

u∈A,v∈B

w(u, v) . (2)

And normalized cut (Ncut) is adopted for graph partition:

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )
, (3)
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where assoc(A, V ) =
∑

u∈A,t∈V w(u, t) is the total weight of edges connecting
nodes in A to all graph nodes.

Finding the optimal bipartition of the graph, i.e. normalized cut, is then
equivalent to minimizing the Ncut(A,B) measure.

3.2 Differentiable Normalized Cuts

Minimizing NCut [32]. Let x = {1,−1}n (n = |V |) be a solution for mini-
mizing Ncut(A,B), where xi = 1 if node i is in A and −1 otherwise. And D is a
diagonal matrix with Dii =

∑
j Wij . Introduce two variables b =

∑
xi>0 Dii∑
xi<0 Dii

and

y = (1 + x)− b(1− x), then according to [32], the problem can be expressed as
minimizing the Rayleigh quotient [16]:

min
y

y⊺(D−W)y

y⊺Dy
, (4)

with the condition y(i) ∈ {1,−b} and y⊺D1 = 0. Since Eqn. 4 is NP-complete,
Shi and Malik [32] relax y to take on real values and to obtain the generalized
eigenvalue system:

(D−W)y = λDy . (5)

Let z = D1/2y, Eqn. 5 can be rewritten as

D−1/2(D−W)D−1/2z = λz . (6)

Obviously, λ1 = 0 is the smallest eigenvalue of Eqn. 5 with corresponding eigen-
vector y1 = 1. As y1 does not have useful information, existing works [28, 45]
adopted the second smallest eigenvector y2 or z2 for segmentation.

Differentiating NCut. In general, the eigenvalue system (Eqn. 5 or 6) does not
have a closed-form solution. Thus, given the second smallest eigenvector z2, we
cannot directly calculate the gradient of z2 w.r.t. feature f (Eqn. 1) to update
the parameters of the ViT encoder Φ. However, we can rely on the following
theorem to calculate the gradient.

Theorem 1. (From Magnus et al. [27]) Let X ∈ Rn×n be a real symmetric
matrix and z be a normalized eigenvector associated with a simple eigenvalue3 λ
of X, i.e., Xz = λz and z⊺z = 1. Then, the differential dz = (λIn−X)+(dX)z,
where In is an identity matrix and + denotes pseudo-inverse.

Using Theorem 1, we can calculate the gradient of an eigenvector z (with sim-
ple eigenvalue) w.r.t. the normalized Laplacian matrix L = D−1/2(D−W)D−1/2

in Eqn. 6:
dz

dLij
= −1

2
(L− λIn)

+(ziej + zjei) , (7)

3 A simple eigenvalue is an eigenvalue with an algebraic multiplicity of one, implying
a unique associated eigenvector.
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where ei = (0, . . . , 0, 1, 0, . . . , 0) with 1 at the i-th position.
Directly computing the pseudo-inverse requires O(n3) complexity, which is

time-consuming. So, we proposed a faster alternative using eigendecomposi-
tion [1]. Specifically, L can be decomposed as L = ZΛZ⊺, where Z is an or-
thogonal matrix with eigenvectors at the columns and Λ is a diagonal matrix
with eigenvalues at the diagonal. Thus,

(L− λIn)
+ = Z(Λ− λIn)

+Z⊺ . (8)

(Λ − λIn)
+ is diagonal and can be efficiently calculated by inverting non-zero

elements of (Λ− λIn). Moreover, the elements of Z and Λ are already obtained
when solving Eqn. 6, without incurring extra overload.

With Eqn. 8, we can efficiently calculate the gradient dz
dL through the NCut

algorithm, and thus back-propagate through the affinity matrix W and features
f , making the encoder Φ end-to-end trainable. Finally, we encapsulate the for-
ward (Eqn. 6) and backward (Eqn. 7 and 8) calculations into a Differentiable
Normalized Cuts layer—a fast plug-and-play layer for including NCut in deep
networks.4

3.3 Self-supervised Dense Learning Framework

Most existing dense representation learning methods [44,47,49] extend instance-
level contrastive learning [8, 17] to the pixel- or region-level. However, inherent
image structures (e.g ., foreground mask from NCut) that provide richer informa-
tion than pixels have not been explored. One possible reason is the difficulty of
backpropagating through such structures. However, with the Differentiable Nor-
malized Cuts layer, we can develop a Self-supervised Dense Learning framework
that is end-to-end trainable. The overall framework (shown in Fig. 2) shares a
similar two-branch structure with recent contrastive methods [11, 17], but with
a focus on dense representation learning.

Dense Feature Representation. Given an image I ∈ R3×M×N , we take
two random crops and apply different augmentations t1, t2 to generate two
views I1 = t1(I), I2 = t2(I). Then, the two cropped views are input to a
shared image encoder Φθ to extract dense features. We follow BYOL [17] to
introduce a Projector g and a Predictor q (g and q are 2D ConvNets) to per-
form asymmetric feature transformation. Then, transformed features are f1 =
g(q(Φθ(I1))),f2 = g(Φθ(I2)) ∈ RC×M/P×N/P . Instance-level contrastive learn-
ing methods (e.g ., DINO [7] and BYOL [17]) only care about the global se-
mantics and make (f1,f2) as positive pairs. In contrast, for dense feature learn-
ing, we care about the spatial information and structures lying in two views.
Therefore, we apply the RoIAlign [21] operation to the two views and trans-
form them to the same overlapping area in the original image as: fovlp

1 ,fovlp
2 =

RoIAlign(f1,f2, t1, t2).
4 While deep learning software libraries, such as PyTorch, implement a differentiable

eigendecomposition API, we found experimentally that our approach results in more
stable learning.
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(a) horizontal (b) vertical (c) uniform
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Fig. 3: Three mask templates for structural regularization.

Mask Consistency Learning. Given fovlp
1 ,fovlp

2 , a straightforward training
strategy is to enforce pixel-to-pixel similarities from the same position, as done
in [44,47]. While simple, this strategy treats each pixel individually and ignores
any structure information, such as edges and object segmentation. Furthermore,
given that leading unsupervised dense prediction techniques, exemplified by To-
kenCut [45], incorporate Normalized Cuts in their post-processing stages, the
pixel-based strategy falls short in maximizing potential benefits.

To align with downstream dense prediction tasks, we use foreground masks
generated by the NCut algorithm and assume the overlapping areas should gen-
erate consistent masks. So we input fovlp

1 ,fovlp
2 into the Differentiable Nor-

malized Cuts layer to obtain two separate segmentation masks movlp
1 ,movlp

2 ∈
RM/P×N/P (i.e., second smallest eigenvector of Eqn. 6). Then we adopt binary
cross-entropy loss Lbce to evaluate the mask consistency. Given a, b ∈ Rn

+, Lbce

is defined as

Lbce(a, b) = − 1

n

n∑

i=1

ai log bi + (1− ai) log(1− bi) . (9)

We can now define the mask-consistency loss as

Lmask = Lbce(m
ovlp
1 , stop_grad(movlp

2 )). (10)

Here, stop_grad denotes the stop gradient operation. We also swap the dense
features before Projector to obtain a symmetric version of Lmask. Different from
DINO [7], we do not need a momentum encoder [20] as the teacher network [7],
which saves GPU memory during training.

With Lmask and Differentiable Normalized Cuts, we can now back-propagate
gradients through NCut algorithm and RoIAlign to update the parameters of
the shared encoder Φ.

3.4 Structural Regularization to Avoid Collapse

For instance-level contrastive learning, there are two common collapse patterns [7]:
one-hot feature distribution and uniform feature distribution. However, our dense
learning framework operates on 2D masks movlp

1 ,movlp
2 instead of 1D feature

vectors. Hence, the collapse patterns of masks might also differ from feature
vectors.

In early experiments, we observed three mask collapse patterns: horizontal,
vertical and uniform. The first two are specific to our architecture and mask-
consistency loss, while the uniform pattern is similar to instance-level contrastive



Unsupervised Dense Prediction using Differentiable Normalized Cuts 9

learning. Motivated by these observations, we design three mask templates M =
{mh, mv, mu} shown in Fig. 3 as a simple mechanism to mitigate against
collapse. Given the three masks, we design a regularization loss as follows:

Lreg = −
∑

m∈M
Lbce(m

ovlp
1 ,m) . (11)

We minimize Lreg to avoid collapse and add it to the mask-consistency loss. The
final loss is

L = Lmask + αLreg , (12)

where α is the regularization factor.

4 Experiments

We evaluate Differentiable Normalized Cuts on three dense prediction tasks: un-
supervised saliency detection (Sec. 4.1), unsupervised object discovery (Sec. 4.2)
and unsupervised semantic segmentation (Sec. 4.3). Moreover, our method is
verified to generalize beyond DION and ViT in Sec. 4.4. We perform ablation
studies in Sec. 4.5.
Training details. Existing methods freeze an ImageNet pre-trained DINO [7]
(ViT-s/16 or ViT-s/8) as the feature extractor and train post-processing modules
on an extra DUTS-TR [40] (10,553 images) dataset. In contrast, we finetune
DINO only on ImageNet to obtain a general dense feature extractor.
Specifically, we take two random crops from an image with a range [0.2, 1.0] and
resize them to (224, 224). Then, we apply different augmentations t1, t2 following
DINO [7]. We train ViT-s/16 (ViT-s/8) for two epochs with a learning rate of
0.0005 and a batch size of 256 (64). We set α to 0.05 in Eqn. 12 to avoid collapse.

After training, we use our ImageNet-trained model to replace DINO as the
feature extractor for dense prediction tasks. When combined with different task-
specific methods, we demonstrate that our model is a better plug-and-play fea-
ture extractor than DINO.

4.1 Unsupervised Saliency Detection

Datasets. We evaluate our method on three benchmarks: DUT-OMRON [48]
(5,168 images), DUTS-TE [40] (5,019 images) and ECSSD [33] (1,000 images).
Evaluation metric. We report results on three metrics: per-pixel mask accu-
racy (Acc), intersection over union (IoU), and maxFβ . Acc is the percentage of
correctly predicted foreground/background pixels. IoU measures the overlap be-
tween the binary predicted mask and the ground truth mask. Following previous
works [28,36,45], Fβ = (1+β2)Precision×Recall

β2Precision+Recall with β = 0.3, and maxFβ is reported
as the maximum value of 255 uniformly distributed thresholds. We also reported
the results of applying bilateral solver [4] post-processing for mask refinement.
Comparison Results. Since our focus is to verify the feature capability for
dense prediction, we directly apply our trained model to three state-of-the-art
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Method Train data DUT-OMRON DUTS-TE ECSSD
Acc IoU maxFβ Acc IoU maxFβ Acc IoU maxFβ

— Without post-processing bilateral solver —
LOST [35] ImNet 79.7 41.0 47.3 87.1 51.8 61.1 89.5 65.4 75.8
DSS [28] ImNet – 56.7 – – 51.4 – – 73.3 –
TokenCut [45] ImNet 88.0 53.3 60.0 90.3 57.6 67.2 91.8 71.2 80.3
Ours + TokenCut ImNet 89.5 55.7 62.8 91.5 59.8 69.8 92.9 74.2 82.8
FreeSOLO [43] ImNet, COCO 90.9 56.0 68.4 92.4 61.3 75.0 91.7 70.3 85.8
FOUND [36] ImNet, DUTS-TR 91.2 57.8 66.3 93.8 64.5 71.5 94.9 80.7 95.5
MOVE [5] ImNet, DUTS-TR 92.3 61.5 71.2 95.0 71.3 81.5 95.4 83.0 91.6
Ours + FOUND ImNet, DUTS-TR 91.7 61.2 71.6 94.1 66.7 77.8 95.7 83.3 95.6
Ours + MOVE ImNet, DUTS-TR 93.3 63.5 73.6 95.3 72.4 83.8 95.6 83.1 90.5
— With post-processing bilateral solver —
LOST [35] ImNet 81.8 48.9 57.8 88.7 57.2 69.7 91.6 72.3 83.7
TokenCut [45] ImNet 89.7 61.8 69.7 91.4 62.4 75.5 93.4 77.2 87.4
Ours + TokenCut ImNet 91.2 63.6 71.9 92.5 63.8 77.4 94.3 79.0 88.7
FOUND [36] ImNet, DUTS-TR 92.2 61.3 70.8 94.2 66.3 76.3 95.1 81.3 93.5
MOVE [5] ImNet, DUTS-TR 93.1 63.6 73.4 95.1 68.7 82.1 95.3 80.1 91.6
Ours + FOUND ImNet, DUTS-TR 92.2 63.1 71.0 94.2 66.8 76.6 93.3 82.7 95.6
Ours + MOVE ImNet, DUTS-TR 93.6 63.0 74.7 95.2 66.9 83.7 95.6 81.4 95.6

Table 1: Unsupervised saliency detection. We apply our trained model (Ours) to
three task-specific methods: TokenCut [45], FOUND [36] and MOVE [5]. State-of-the-art
results are obtained in almost all settings. The best results are highlighted in bold.

methods (TokenCut [45], FOUND [36] and MOVE [5]) to obtain the saliency masks.
For TokenCut, we directly replace the DINO pre-trained model with ours for
evaluation. For FOUND and MOVE, we replace their DINO feature extractors
with ours and keep them frozen. Then, we strictly follow their original setups
to only train the specific post-processing modules on the DUTS-TR [40] dataset
for a fair comparison.

From Tab. 1, we find that our trained model improves the performance of
TokenCut for all metrics on three datasets. Since TokenCut does not conduct
any training, the improvements solely come from the feature backbone, demon-
strating the effectiveness of our method as a better dense feature extractor. For
methods with extra data for training (FOUND and MOVE), our trained model
improves most of the metrics (except for MOVE5 with bilateral solver, which
trades off IoU against maxFβ). This shows the compatibility between our model
and the task-specific post-processing methods. Moreover, FOUND and MOVE do
not employ Normalized Cuts to generate masks, which means our method can
generalize beyond the Normalized Cuts algorithm as a generic feature extractor.
Finally, using our trained model, state-of-the-art results are achieved in almost
all metrics and settings.
Qualitative Results. To understand the difference between our trained model
and DINO, we show qualitative results in Fig. 4. Comparing Fig. 4(c) and 4(d),
we observe that our model obtains higher-quality and cleaner attention (second
smallest eigenvectors z2 from NCut [32]) than DINO on the salient object. This
is attributed to our self-supervised mask-consistency loss, which improves the
dense feature quality by back-propagating through NCut. When combined with

5 Besides DINO, MOVE [5] used another MAE [19] (ViT-L/16) pre-trained in an
adversarial fashion. Since only DINO can be replaced with ours, we conjecture that
this leads to the tradeoff between IoU and maxFβ .
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Fig. 4: Qualitative results of unsupervised saliency detection. Compared with
DINO, our model obtains higher quality and cleaner foreground attentions (second
smallest eigenvector z2 from NCut [32]). Therefore, applying our model to three tasks-
specific methods (TokenCut [45], FOUND [36] and MOVE [5]) can reduce the noisy
background and improve the quality of saliency masks.

different task-specific methods, our model significantly improves their results
(Fig. 4(e)–(j)) by reducing the background noises.

4.2 Unsupervised Object Discovery

Datasets. We evaluate our method
on three common benchmarks: the
trainval split of PASCAL VOC07 [14]
& VOC12 [15] datasets, and the train
split of COCO20K [25, 39]. The goal of
this task is to detect a single object for
each image using unsupervised models.
Evaluation metric. As in [31, 36, 45],
we adopt Correct Localization (CorLoc)
as the metric, which calculates the per-
centage of correctly predicted boxes. A
predicted box is regarded as correct if
it has an intersection over union (IoU)
larger than 0.5 with any ground-truth
boxes.

Method VOC07 VOC12 COCO20k
DINO-seg [7, 35] 45.8 46.2 42.1
LOST [35] 61.9 64.0 55.7
FreeSOLO [43] 56.1 56.7 52.8
DSS [28] 62.7 66.4 56.2
TokenCut [45] 68.8 72.1 58.8
Ours + TokenCut 71.3 (2.5↑) 74.2 (2.1↑) 61.6 (2.8↑)
FOUND [36] 72.5 76.1 62.9
Ours + FOUND 73.5 (1.0↑) 76.9 (0.8↑) 63.6 (0.7↑)
MOST [31] 74.8 77.4 67.1
Ours + MOST 75.6 (0.8↑) 78.7 (1.3↑) 69.4 (2.3↑)

Table 2: Unsupervised object dis-
covery. CorLoc score on VOC07,
VOC12 and MS-COCO20k datasets.
“Ours + ” indicates applying our
trained backbone to different task-
specific post-processing methods. The
best results are highlighted in bold.

Comparison Results. To verify the dense prediction capability of our model,
we apply our trained model to three post-processing methods: TokenCut [45],
FOUND [36] and MOST [31]. As shown in Tab. 2, the performance of all three
methods improves after using our model, and state-of-the-art results are obtained
by combining our model with MOST post-processing (Ours + MOST). Since
the original feature extractor for all three methods is pre-trained DINO, this
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corroborates that our model provides better dense features suitable for localizing
objects.

4.3 Unsupervised Semantic Segmentation

Dataset. Following [51], we finetune the model on ImageNet-100 [38] or COCO [25]
dataset, and evaluate the overclustering (cluster K = 500) or unsupervised se-
mantic segmentation (K = 21) results on Pascal VOC 2012 [15].
Evaluation metric. We report the mean Intersection over Union (mIoU) for
both settings. We adopt the ViT-S/16 backbone pretrained either from DINO
or our model, and then finetune using the Leopart [51] objective.

DINO [7] Ours SwAV [6] MoCo-v2 [10] DINO+Leopart Ours+Leopart
K=500 17.4 19.0 35.7 39.1 53.3 55.2
K=21 4.6 5.8 13.7 18.5 18.9 20.2

Table 3: Unsupervised semantic segmentation.

Comparison Results. As shown in Tab. 3, without any post-processing, our
finetuned model outperforms DINO by 1.6% and 1.2%, respectively. After apply-
ing the Leopart for clustering, our model also outperforms the pretrained DINO
backbone by 1.9% and 1.3%, respectively. Those results verify the superior se-
mantic recognition potential of our model over DINO beyond the saliency and
detection tasks.

4.4 Generalize Beyond DINO

In the above experiments, we have shown the benefits of our method on top of
pre-trained DINO. In this section, we verify that our method can generalize to
other pre-training methods beyond DINO and architecture beyond ViT.

To eliminate the dataset-specific factors and directly assess the feature ca-
pability, we implement a simple, dataset-agnostic heuristics for post-processing:
taking the second smallest eigenvector z2 > 0 as criteria to generate the fore-
ground mask, denoted as Simple. We also include TokenCut and other task-
specific methods for comparison.
Pre-training Models. We take other pre-training methods: Masked Autoen-
coders (MAE) [19] and MoCoV3 [9], and adopt the same experiment setup as
DINO, i.e., finetuning each pre-trained model for two epochs on ImageNet. Ac-
cording to Tab. 4, our method significantly improves the performance of both
MAE and MoCoV3 by at least 5% Average IoU. This means our method can
consistently improve the dense prediction capability of various pre-training meth-
ods beyond DINO. And this capability is obtained in a cheap way, i.e., only two
epochs of finetuning on ImageNet.
Network Architecture. We report the results of diverse network architec-
tures and configurations in Tab. 4, including ResNet50, ViT-S/8, ViT-S/16, and
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Post-process Pre-training Backbone DUT-OMRON DUTS-TE ECSSD
Acc IoU maxFβ Acc IoU maxFβ Acc IoU maxFβ Avg ↑

Simple
z2 > 0

DINO [7] ResNet50 72.9 22.7 30.2 76.0 29.2 40.3 72.9 39.4 50.5
Ours + DINO 75.3 28.5(5.8) 38.2 78.4 34.7(5.5) 47.8 76.5 47.3(7.9) 60.2 +6.4
DINO [7] ViT-S/16 88.2 49.7 62.3 91.1 58.2 72.6 90.1 68.6 81.2
Ours+DINO 89.5 56.4(6.7) 65.4 91.2 61.8(3.6) 72.5 91.3 72.9(4.3) 83.9 +4.9
MoCoV3 [9] ViT-S/16 85.8 39.0 49.7 89.9 53.5 66.1 88.5 62.1 74.5
Ours+MoCoV3 88.1 52.7(13.7) 64.2 90.2 58.9(5.4) 71.3 91.1 72.8(10.7) 83.5 +9.9
MAE [19] ViT-B/16 85.5 48.6 61.4 89.6 55.9 71.1 87.6 65.4 78.5
Ours+MAE 89.9 57.8(9.2) 69.1 92.7 63.6(7.7) 76.6 91.9 74.7(9.3) 85.5 +8.7

TokenCut

DINO [7] ResNet50 68.9 25.7 29.5 73.0 31.3 36.3 73.9 44.0 49.2
Ours+DINO 73.2 30.9(5.2) 35.3 77.1 36.4(5.1) 42.0 78.3 50.5(6.5) 56.1 +5.6
DINO [7] ViT-S/16 88.0 53.3 60.0 90.3 57.6 67.2 91.8 71.2 80.3
Ours+DINO 89.5 55.7(2.4) 62.8 91.5 59.8(2.2) 69.8 92.9 74.2(3.0) 82.8 +2.5
MoCoV3 [9] ViT-S/16 83.5 44.5 51.0 88.1 53.3 63.3 90.2 68.6 78.4
Ours+MoCoV3 88.0 53.3(8.8) 60.0 90.3 57.6(4.3) 67.2 91.8 71.2(2.6) 80.3 +5.2
MAE [19] ViT-B/16 79.2 42.5 47.7 84.5 49.2 56.4 87.9 65.2 72.1
Ours+MAE 85.9 52.4(9.9) 58.7 89.3 57.1(7.9) 66.2 92.0 73.0(7.8) 81.5 +8.5

Simple
z2 > 0

DINO [7] ViT-S/8 87.8 43.7 55.9 91.5 59.3 72.5 88.5 61.1 76.6
Ours+DINO 90.9 57.3(13.6) 68.8 92.7 64.3(5.0) 76.5 91.8 71.5(10.4) 84.7 +9.7

TokenCut DINO [7] ViT-S/8 89.5 57.2 65.1 91.6 61.9 73.3 92.7 74.1 85.2
Ours+DINO 91.8 60.9(3.7) 69.5 92.7 63.4(1.5) 76.7 93.3 75.4(1.3) 87.0 +2.2

FOUND
DINO [7] ViT-S/8 91.2 57.8 66.3 93.8 64.5 71.5 94.9 80.7 95.5
Ours+DINO 91.7 61.2(3.4) 71.6 94.1 66.7(2.2) 77.8 95.7 83.3(2.6) 95.6 +2.7

MOVE† DINO [7] ViT-S/8 92.3 61.5 71.2 95.0 71.3 81.5 95.4 83.0 91.6
Ours+DINO 93.3 63.5(2.0) 73.6 95.3 72.4(1.1) 83.8 95.6 83.1(0.1) 90.5 +1.1

†Besides DINO, MOVE used an MAE pre-trained in an adversarial fashion. We only replace DINO with ours.
Table 4: Performance improvements across various pre-training methods,
architectures and post-processing methods. “Simple” refers to our simple dataset-
agnostic post-processing heuristics, i.e., employing the second smallest eigenvector z2 >
0 for foreground delineation. The IoU improvements are shown in the parentheses. The
average IoU improvements are shown in the rightmost column.

ViT-B/16. Our method generalizes to all listed architectures and configurations,
usually with a significant increase over existing pre-trained models. Although
ResNet does not have the emerging object attention property as ViT [7], our
method consistently improves pre-trained ResNet50 by over 5% IoU.

For ViT-S/8, we gather different post-processing methods for comparison.
Tab. 4 shows that our model consistently improves the performance of all post-
processing methods. We also find that using our model, even simple dataset-
agnostic heuristics can match the results of well-designed post-processing meth-
ods such as TokenCut [45].

4.5 Ablation Study

Mask Collapse. As a self-supervised dense learning method, we have ob-
served specific mask collapse patterns different from existing self-supervised
methods [7, 17]. First, without any regularization, the masks movlp

1 ,movlp
2 con-

verge to horizontal stripes shown in Fig. 5(a). Then, we apply negative BCE
regularization on the horizontal pattern (Fig. 3(a)), and observe collapsing to
vertical stripes shown in Fig. 5(b). After applying both horizontal and vertical reg-
ularization, the collapse issue is fixed. But if we remove the projector g, a third
collapse pattern (Fig. 5(c)) ensembling uniform mask appears. We conjecture
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(a) (b) (c)

Fig. 5: Mask Collapse. (a) Our model collapses to a horizontal pattern without
regularization. (b) After penalizing the horizontal pattern with BCE loss, the vertical
pattern appears. (c) If we remove the projector g, the third collapse pattern appears.

DUT-OMRON DUTS-TE ECSSD
Ours 56.4 61.8 72.9
w/o structural regularization 48.8 55.8 69.8
w/o projector 52.2 59.1 66.3
pixel consistency 46.0 54.2 66.7

Table 5: Ablation study of design choices. We use the “Simple” post-processing:
taking z2 > 0 as foreground. IoU is reported.

that constrained by our architecture and the mask-consistency loss, the mask
might gradually lose its structure information and collapse to these patterns as
a trivial solution. This motivates us to design the three structural regularization
patterns in Sec. 3.4.
Design Choices. We then study the impact of different design choices on our
model, listed in Tab. 5. For pixel consistency, we use cross-entropy loss on fovlp

1

and fovlp
2 , which is similar to DenseCL [44] and can be seen as a dense extension

of DINO. If a model variant collapses, we evaluate the checkpoint before col-
lapsing. Otherwise, we train each model for two epochs. From the comparisons
in Tab. 5, we find that it is critical to apply structural regularization and pro-
jector to ensure the model does not collapse. The pixel consistency variant only
uses pixel-level information, thus performing much worse than our mask consis-
tency method. This demonstrates the effectiveness of the proposed Differentiable
Normalized Cuts layer.

5 Conclusion

In this paper, we propose an effective self-supervised dense feature learning
framework, to improve the dense prediction capability of existing pre-trained
models. The core component of our framework is the Differentiable Normalized
Cuts layer. In the forward pass of this layer, we employ the classical Normalized
Cuts algorithm to generate unsupervised foreground masks. In the backward
pass, we present an efficient gradient formulation for back-propagation, using
matrices only from the forward pass for fast computation. Based on this layer,
we devise an effective two-branch architecture and propose a mask-consistency
loss to train the model. Our method generalizes to diverse pre-trained models,
network architectures, and dense prediction tasks.
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