
Unsupervised Dense Prediction using
Differentiable Normalized Cuts

(Supplementary Material)

Yanbin Liu1 and Stephen Gould2

1 Auckland University of Technology
2 Australian National University

yanbin.liu@aut.ac.nz, stephen.gould@anu.edu.au

1 Technical Details

Training and Loss details. We first describe a symmetric version of the mask
consistency loss, denoted as L′

mask. In this case, the features are obtained as:
f ′
1 = g(Φθ(I1)),f

′
2 = q(g(Φθ(I2))), which swaps the features before Projector in

Fig. 2. And fovlp′

1 ,fovlp′

2 = RoIAlign(f ′
1,f

′
2, t1, t2). Then movlp′

1 ,movlp′

2 can be
computed by NCut [5]. Finally,

L′
mask = Lbce(stop_grad(m

ovlp′

1 ), movlp′

2 ). (1)

We only compute losses for examples that have an IoU(movlp′

1 , movlp′

2 ) > 0.5.
Given movlp′

2 , we also enforce the structural regularization on it, similar to
Eqn. 11. Moreover, the symmetric version of the horizontal and vertical masks
(Fig. 3) is utilized for regularization.

For training, we adopt the Layer-wise Adaptive Rate Scaling (LARS) on top
of an SGD optimizer with a momentum of 0.9.

Structure of the Projector and Predictor. Both the Projector and Pre-
dictor are two-layer 2D ConvNets. The structure of the Projector is as fol-
lows Conv2D(384, 384) – BN – GELU – Conv2D(384, 256). The structure of
the Predictor is as follows Conv2D(256, 384) – BN – GELU – Conv2D(384, 256).
The number inside the parentheses indicates the input and output channels.

Prevent numerical instablity. One issue of differentiating the eigendecompo-
sition problem is the numerical instability when two eigenvalues λi, λj get close
to each other3. For example, the Pytorch function torch.linalg.eigh encoun-
ters this issue. Let Kij =

1
λi−λj

. In this paper, we deal with the numerical issue
by setting Kij = 0 when |λi − λj | < 10−9.

3 https://pytorch.org/docs/stable/generated/torch.linalg.eigh.html
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VOC07 VOC12 COCO20k
Ours 71.3 74.2 61.6
w/o structural regularization 64.0 69.1 53.4
w/o projector 56.5 58.0 53.1
pixel consistency 62.0 67.1 52.2

Table 1: Ablation study of design choices for Object Discovery Task. We use the
TokenCut [7] post-processing to extract bounding boxes. CorLoc score is reported.

α DUT-OMRON DUTS-TE ECSSD
0.0 48.8 55.8 70.0
0.025 52.8 59.9 72.5
0.05 56.4 61.8 72.9
0.1 54.9 59.2 72.5
0.2 49.4 51.6 70.8
0.4 34.4 37.2 54.4

Table 2: Effect of the regularization factor α. We use the “Simple” post-
processing: taking z2 > 0 as foreground. IoU is reported. The best performance is
shown in bold.

2 More Ablation Study

Ablation on Object Discovery. In Tab. 4 of the main paper, we ablated the
design choices on Saliency Detection. Here, we conducted similar ablation for
the Object Discovery Task, and show the results in Tab. 1. A similar conclusion
can be drawn that each of our model components (i.e., structural regularization,
Projector, mask-consistency loss) is important for the overall performance.

Effect of the regularizer factor α. We then study the effect of the structural
regularization parameter α, and show the results in Tab. 2. It can be seen that
too strong or too weak regularization is harmful to performance. The best results
are achieved when α = 0.05.
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Fig. 1: IoU on ECSSD dataset with different finetuning epochs.
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Method Architecture Forward Backward Total
Pseudo inverse ViT-S/16 0.6677 4.8206 5.4883
Pseudo inverse ViT-S/8 0.7616 8.3074 9.0690
Ours ViT-S/16 0.6677 0.0011 0.6688
Ours ViT-S/8 0.7616 0.0013 0.7629

Table 3: Running time (seconds) comparison of Pseudo-inverse and Our
method. All forward passes adopted the same torch.linalg.eigh4 function, while
backward utilized either Eqn. 7 or Eqn. 8.

Effect of the training epochs. We show the IoU w.r.t different epochs in
Fig. 1. Our method is stable and peaks at epoch two. However, without regular-
ization (Eq. 11), the performance drops quickly after three epochs, showing the
necessity of regularization.

Running time comparison of Pseudo-inverse and Our method. The
original formulation of Magnus et al. [4] involves a Pseudo-inverse operation
(Eqn. 7), which is time-consuming. We propose a more efficient formulation by
utilizing eigen decomposition (Eqn. 8). To compare the running time, we perform
experiments on NVIDIA A100 80GB GPU. For ViT-S/16, the batch size is 256,
and for ViT-S/8, the batch size is 64. The time comparison is reported in Tab. 3.
We can find that in the forward pass, the running time is the same for both
methods. But in the backward, the time cost of our method is neglected due to the
simple reciprocal operation and re-use of forward matrices. In contrast, Pseudo-
inverse has a large time cost due to the complex inverse operation. Overall, our
method is over 8× faster compared with the Pseudo-inverse.

Evolving pattern of the mode collapse. We show results as the training it-
eration increases to understand the possible collapse patterns of the dense learn-
ing framework. In the beginning, the mask is clear and well-structured. With
training continuing, the mask becomes blurred and gradually loses its struc-
ture. Finally, the mask collapses to a horizontal striped pattern. With structural
regularization, the mask always remains meaningful and sharp.

3 Object Discovery Generalizes Beyond DINO

In the main paper (Section 4.3 and Tab. 3), we have verified that our method
can generalize to various pre-training methods (MAE [3] and MocoV3 [2]) be-
yond DINO and various network configurations (ResNet, ViT-S/16, ViT-S/8 and
ViT-B/16), on Unsupervised Saliency Detection datasets. In order to verify the
4 The backward pass of Pytorch is numerically unstable and has several constraints:

(1) Gradients computed using the eigenvectors tensor will only be finite when A
has distinct eigenvalues. (2) Furthermore, if the distance between any two eigen-
values is close to zero, the gradient will be numerically unstable. In contrast, our
implementation (Eqn. 8) is numerically stable and efficient.
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Fig. 2: Training Collapse. Without regularization, the mask gradually loses struc-
tural information and gets blurred. Finally, it collapses to a horizontal striped pattern.
With our structural regularization, the mask always keeps meaningful and sharp. Note
that due to the simple heuristics (i.e., taking second smallest eigenvector z2 > 0 as the
foreground), the foreground and background masks sometimes change.

generalization capability across different tasks, we do the same experiments on
the Unsupervised Object Discovery datasets. The results are shown in Tab. 4.
A similar conclusion can be drawn for object discovery: our method can signif-
icantly improve the performance of existing pre-trained models at a cheap cost
(i.e., two epochs of finetuning).

4 More Visualization Results

We show more visualization results in Fig. 3. We observed several interesting
examples. In the first row, our trained model focuses more on the person, while
the original DINO [1] focuses on the reflection. This results in different saliency
masks in Fig. 3(e) and (f). In the second row, our model is able to provide
accurate attention to tiny objects. In the third row, our model attends to the
foreground person, while DINO attends to the noisy background. Note that our
method also has failure cases, as shown in the last two rows. When there are
multiple objects in an image, applying our model to FOUND [6] sometimes results
in larger background saliency.

In Normalized Cuts [5] theory, the eigenvectors z2
5, z3, z4, z5, . . . , naturally

decompose an image into semantic segments, as shown in Fig. 4. We select z2 to
5 The smallest eigenvector z1 = 1 is trivial.
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Post-process Pre-training Backbone VOC07 VOC12 COCO20k Avg CorLoc↑

Simple
z2 > 0

DINO [1] ResNet50 45.4 51.2 34.9
Ours + DINO 52.0(6.6) 58.2(7.0) 40.4(5.5) +6.4
DINO [1] ViT-S/16 63.2 66.2 52.7
Ours + DINO 67.7(4.5) 71.2(5.0) 57.4(4.7) +4.7
MoCoV3 [2] ViT-S/16 57.7 60.3 45.8
Ours + MoCoV3 64.3(6.6) 68.2(7.9) 52.7(6.9) +7.1
MAE [3] ViT-B/16 58.7 62.1 46.3
Ours + MAE 69.4(10.7) 72.9(10.8) 58.1(11.8) +11.1

TokenCut [7]

DINO [1] ResNet50 47.3 52.2 37.4
Ours + DINO 56.0(8.7) 62.3(10.1) 46.2(8.8) +9.2
DINO [1] ViT-S/16 68.8 72.1 58.8
Ours + DINO 71.3(2.5) 74.2(2.1) 61.6(2.8) +2.5
MoCoV3 [2] ViT-S/16 65.1 69.2 53.1
Ours + MoCoV3 67.5(2.4) 71.9(2.7) 56.8(3.7) +2.9
MAE [3] ViT-B/16 58.1 63.8 42.4
Ours + MAE 66.3(8.2) 71.7(7.9) 54.6(12.2) +9.4

Table 4: Object detection improvements across various pre-training methods, archi-
tectures and post-processing methods. “Simple” refers to our simple dataset-agnostic
post-processing heuristics, i.e., employing the second smallest eigenvector z2 > 0 for
foreground delineation. The CorLoc improvements are shown in the parentheses. The
average improvements are shown in the rightmost column.

obtain a mask for dense prediction. However, our model can be easily extended
to include multiple eigenvectors for visual semantics.
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Fig. 3: More Visualization Results. Our method has a better and cleaner eigen at-
tention mask (d), thus improving the performance of existing state-of-the-art methods
by removing noisy backgrounds.
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Fig. 4: Eigenvectors VS. Semantic segments


	Unsupervised Dense Prediction using Differentiable Normalized Cuts ((Supplementary Material)

