
Supplemental Material

Paper ID: 518

A Appendix
A.1 Convex Relaxation and Dual of Problem (11)
Since problem (11) is a mixed integer problem regarding η
and µ, it is hard to directly optimize. Motivated by (Tan et
al. 2010), we apply convex relaxation and Lagrange dual to
make some transformations.

Firstly, we introduce dual variables α,β ∈ RNh for the
hingle loss constraint:

`(µ,η; (xi, yi)) = max(0, 1− yiµT (η � xi)). (21)

As to problem (11), we can get the Lagrangian function of
the inner problem w.r.t µ:

L(µ, `,α,β) =
1

2
(µ− µh−1)TΣh(η)−1(µ− µh−1)

+
C

q

Nh∑
i=1

Di`(µ,η; (xi, yi))
q +

Nh∑
i=1

(−βi`(µ,η; (xi, yi)))

+

Nh∑
i=1

αi(1− yi(µ� η)Txi − `(µ,η; (xi, yi))) (22)

By taking derivative over variables µ and `, we get:

∇µL = Σ(η)−1(µ− µh−1)−
Nh∑
i=1

αiyi(xi � η) = 0,

∇`iL = CDi − αi − βi = 0, αi, βi ≥ 0, for q=1 ,
∇`iL = CDi`i − αi − βi = 0, βi = 0, for q=2 .

With some transformations, then:

µ− µh−1 = Σ(η)

Nh∑
i=1

αiyi(xi � η),

0 ≤ αi ≤ CDi, for q=1 ,
`i = αi/(CDi), for q=2 .

Let g(α,η) :=
∑Nh

i=1 αiyi(xi � η), A := {α ∈ RNh |0 ≤
αi ≤ U,∀i ∈ [Nh]} is the domain of α (here, U =
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CDi for q = 1 and U = ∞ for q = 2), then we can get
the dual of inner problem (11) as:

max
α∈Λ

− 1

2
g(α,η)TΣ(η)g(α,η)− q − 1

2C

Nh∑
i=1

α2
i

Di

+

Nh∑
i=1

αi − µTh−1g(α,η), (23)

We define objective of (23) as f(α,η) for convenience.
Problem (11) can be reformulated as a minmax problem:

min
η∈Λ

max
α∈A

f(α,η), (24)

This problem is also a mixed integer problem, but we
have the following property according to minmax inequal-
ity (Sion 1958):

min
η∈Λ

max
α∈A

f(α,η) ≥ max
α∈A

min
η∈Λ

f(α,η), (25)

The latter problem of (25) provides a lower bound to prob-
lem (24) and it is also a convex problem. By introducing a
variable θ, we can transform the problem into :

max
θ∈R,α∈A

θ, s.t. θ ≤ f(α,η),∀η ∈ Λ. (26)

A.2 Solving for the Primal of Problem (15)
We prove that problem (16) is the primal of problem (15).

Let Ω(w) = 1
2 (
∑K
k=1 ‖wk − wh−1

k ‖)2. Define second
order crone Qr = {(u,v) ∈ Rr+1, ‖u‖2 ≤ v}. Let
zk = ‖wk − wh−1

k ‖, then Ω(w) = 1
2z2, where z =∑K

k=1 zk, zk ≥ 0 and z ≥ 0. Then problem (16) can be
reformulated as:

min
z,wk,`

1

2
z2 +

C

q

Nh∑
i=1

Di`(wk,η)q,

s.t.
K∑
k=1

zk ≤ z, (wk −wh−1
k , zk) ∈ Qr, (27)

We introduceα,β, γ, δ, ε here. With δ, ε and the constraints
on second order crone Qr, we point out that δTk (wk −



wh−1
k ) + εkzk along with ‖δk‖ ≤ εk equals original con-

straints on Qr with Lagrangian multiplier. Now Lagrangian
function can be written as:

L(z,wk, `,α,β, γ, δ, ε) =
1

2
z2 +

C

q

Nh∑
i=1

Di`
q
i +

Nh∑
i=1

(−βi`i)

−
K∑
k=1

(δTk (wk −wh−1
k ) + εkzk) + γ(

K∑
k=1

zk − z)

+

Nh∑
i=1

αi(1− yi
K∑
k=1

wT
k x̂ki − `i). (28)

Taking derivatives w.r.t z,wk, `i, the KKT condition is as
follows:

∇zL = z− γ = 0,

∇zk
L = γ − εk = 0,

∇wk
L = −

Nh∑
i=1

αiyix̂
k
i − δk = 0,

∇`iL = CDi − αi − βi = 0, αi, βi ≥ 0, for q=1 ,
∇`iL = CDi`i − αi − βi = 0, βi = 0, for q=2 ,
‖δk‖ ≤ εk.

Substituting all the equations back into Lagrangian function,
we have

L(z,wk, `,α,β, γ, δ, ε) = −1

2
γ2 − q − 1

2C

Nh∑
i=1

α2
i

Di
+

Nh∑
i=1

αi

+

K∑
k=1

δkwh−1
k . (29)

Let A := {α ∈ RNh |0 ≤ αi ≤ U} be the domain of α
where U = CDi for q = 1 and U = ∞ for q = 2. We then
rewrite dual problem of Lagrangian:

max
γ∈R,α∈A

L(z,wk, `,α,β, γ, δ, ε)

s.t.‖
K∑
k=1

αiyix̂
k
i ‖ ≤ γ, k = 1, . . . ,K (30)

Let θ := L(z,wk, `,α,β, γ, δ, ε) and g(α,ηk) =∑K
k=1 αiyi(x̂i � ηk). We further define f(α,ηk) =

− 1
2g(α,ηk)Tg(α,ηk) − q−1

2C

∑Nh

i=1
α2

i

Di
+
∑Nh

i=1 αi −
(wh−1

k )Tg(α,ηk). Then,

max
θ,α∈A

θ, s.t. θ ≤ f(α,ηk), k = 1, . . . ,K. (31)

Since x̂i = Σ
1
2

k xi, with some transformation, we can get
that (31) is equivalent to (15).

A.3 Conjugate Dual of Problem (17)
Problem (17) can be written as:

min
w

Ω(w) + C

Nh∑
i=1

Li(w
T x̂i). (32)

Let pi := wT x̂i, (32) can be reformulated as:

min
w

Ω(w) + C

Nh∑
i=1

Li(pi), s.t. pi = wT x̂i, i = 1, . . . , Nh

(33)

Now the Lagrangian function:

L(w,p,α) = Ω(w) + C

Nh∑
i=1

Li(pi) + C

Nh∑
i=1

αi(pi −wT x̂i)

= Ω(w)− C
Nh∑
i=1

αiw
T x̂i + C

Nh∑
i=1

(Li(pi) + αipi).

(34)

Let z(α) = C
∑Nh

i=1 αix̂i. If we decouple w and p, and
minimize Lagrangian function w.r.t w and p, then:

min
w,p
L(w,p,α)

= min
w

(Ω(w)−wT z(α)) + min
p
C

Nh∑
i=1

(Li(pi) + αipi)

= −max
w

(wT z(α)− Ω(w))−max
p

C

Nh∑
i=1

(−αipi − Li(pi))

= −Ω∗(z(α))− C
Nh∑
i=1

L∗i (−αi). (35)

Thus the dual problem is:

max
α≥0
−Ω∗(z(α))− C

Nh∑
i=1

L∗i (−αi). (36)

A.4 Computation of∇∗Ω(z(α))

In order to solve w, we need to compute w = ∇∗Ω(z) given
z and wh−1. Based on the conjugate dual property, we have
the following problem:

w = arg max
w

wT z− Ω(w)

= arg max
w

wT z− σ

2
‖w −wh−1‖2 −

1

2
(

K∑
k=1

‖wk −wh−1
k ‖2)

= arg max
w
−σ

2
‖w −wh−1 −

z

σ
‖2 − 1

2
(

K∑
k=1

‖wk −wh−1
k ‖2)

= arg min
w

σ

2
‖w −wh−1 −

z

σ
‖2 +

1

2
(

K∑
k=1

‖wk −wh−1
k ‖2)

(37)

Problem (37) is strictly convex problem, thus a unique min-
imizer exits, and can be computed in close-form. Accord-
ing to (Martins et al. 2011), we give the detailed solution as
shown in Algorithm 3.



Algorithm 3 Computation of w = ∇∗Ω(z)

Require: z,wh−1, parameter 1
σ .

Initialize ω = z
σ .

Compute ôk = ‖ωk‖ where ωk is associated with wk for
k = 1, . . . ,K
Sort ô to obtain ō such that ō1 ≥ · · · ≥ ōK .

Find ρ = max{k|ōk − s
1+ks

k∑
i=1

ōi > 0, k = 1, . . . ,K}.

Compute a threshold value ζ = s
1+ρs

ρ∑
i=1

ōi.

Calculate o, where ok =

{
ôk − ζ, if ôk > ζ,

0, Otherwise.

Calculate ω̂k =

{
ok
‖ωk‖ωk, if ok > 0,

0, Otherwise.
Let w = [ω̂k]Kk=1 and return w.

A.5 Online Update of Imbalance Measures
In this paper, we focus on three performance measures: F-
measure, AUROC and AUPRC instead of mistake number
or classification loss used in traditional methods. According
to Algorithm 2, we need to maintain and update the perfor-
mance measures M j

h+1 at each iteration h. However, if we
directly compute M j

h+1, it is computation expensive and re-
quires to store all historical predictions and labels, which is
really inefficient. Instead, we present how to update M j

h+1
by only using Mh and current fh,yh.

For F-measure, let ȳh = (yh + 1)/2 and ŷh = sign(fh >

0), ah =
∑h
τ=1 ȳτ · ŷτ , ch =

∑h
τ=1

∑
ȳτ +

∑h
τ=1

∑
ŷτ .

We can calculate F-measure as: Fh+1 = 2ah
ch

. In order to
compute F-measure incrementally, we only need to update
ah and ch as:

ah+1 = ah + ȳh+1 · ŷh+1,

ch+1 = ch +
∑

ȳh+1 +
∑

ŷh+1.

AUROC and AUPRC are different from F-measure in that
they need to compute the area value under various thresh-
olds. We introduce two auxiliary hash table Lh+ and Lh−
of size m that partition (0, 1) into m uniform ranges. For
i ∈ {1, . . . ,m}, Lh+[i] stores the number of positive exam-
ples before (including) h-th iteration with predictions f such
that σ(f) ∈ [(i−1)/m, i/m). Similarly, Lh− stores negative
examples with σ(f) ∈ [(i − 1)/m, i/m). σ is the sigmoid
function that normalize f to (0, 1). Let N+

h and N−h denote
the number of positive and negative examples respectively.
We then compute the True Positive Rate (TPR) and False
Positive Rate (FPR) as: TPR(i) =

∑m
j=i+1 L

h
+[j]/N+

h and
FPR(i) =

∑m
j=i+1 L

h
−[j]/N−h . Thus,

AUROC =
1

2

m−1∑
i=0

[FPR(i+1)−FPR(i)][TPR(i)+TPR(i+1)].

Similarly, Precision (P) and Recall (R) are computed
as: P(i) =

∑m
j=i+1 L

h
+[j]/

∑m
j=i+1(L+

h [j] + L−h [j]) and

R(i) = TPR(i). Similarly,

AUPRC =
1

2

m−1∑
i=0

[R(i)− R(i+ 1)][P(i) + P(i+ 1)].

In order to compute AUROC and AUPRC incrementally, we
only need to maintain and update Lh+ and Lh−.

A.6 Proof of Proposition 1

We mainly consider F1-score, whose computation is

F (h) =
2(P1 − fn)

2P1 − fn + fp
,

where h can be any hypothesis (classifiers, models, etc.), fn
and fp denote the false negative probability and false posi-
tive probability, respectively.

Following (Parambath et al. 2014), we define the follow-
ing notations for binary classification:

a(θ) = [1− θ

2
,
θ

2
] ∈ R2,

P1 : the marginal probability of the positive instances,

e = [fn, fp] ∈ R2 : error profile,

E(h) = [fn, fp] ∈ R2 : error profile of h,

e(θ) ∈ arg min
e′∈E
〈a(θ), e′〉.

Lemma 1. (Proposition 4 in (Parambath et al. 2014)) Let
F ∗ = maxe′∈E(H) F (e′). We have:

e ∈ arg min
e′∈E(H)

〈a(F ∗), e′〉 ⇔ F (e) = F ∗.

Lemma 2. (In the proof of Proposition 6 in (Parambath et
al. 2014)) F (e) = t⇔ 〈a(t), e〉 = mine′∈E(H)〈a(t), e′〉 =
2P1(t−1)

2 .

Here we re-present Proposition 1 as follows:

Proposition 1. Given the evenly distributed values θ1, ..., θK
and the cost vector a(θ) = [1 − θ

2 ,
θ
2 ], let ∆ =

θj−θj+1

2 =
1

2K . Denote F ∗ = maxe F (e) the maximum F-measure
and F (µ) a function of µ that computes the F-measure
achieved by µ. Assume that {µ1

h, ...,µ
K
h } minimizes the

cost-sensitive loss to a certain degree and E(µ) = [fn, fp],
i.e., false negative probability and false positive probability.
Then the F-measure achieved by Algorithm 2 has the fol-
lowing lower bound as long as h increases:

max
j=1,...,K

F (µjh) ≥ F ∗ −∆− ε0
P1
,

where k = arg maxj=1,...,K F (µjh) and 〈a(θj),E(µkh)〉 ≤
minµ〈a(θj),E(µ)〉+ ε0.
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Figure S1: Online performance for ratio 1:5

Proof.

F ∗ − F (µjh)

=F ∗ −
2(P1 −E(µjh))

2P1 −E1(µjh) +E2(µjh)

=
2P1(F ∗ − 1) + 〈a(θ∗),E(µjh)〉

2P1 −E1(µjh) +E2(µjh)

=
〈a(θ∗)− a(θj),E(µjh)〉+ 〈a(θj),E(µjh) + 2P1(θ∗ − 1)〉

2P1 −E1(µjh) +E2(µjh)

=
(θ∗ − θj) + 〈a(θj),E(µjh)〉+ 2P1(θ∗ − 1)

2P1 −E1(µjh) +E2(µjh)

≤ (θ∗ − θj) + 〈a(θj), e(θj)〉+ ε0 + 2P1(θ∗ − 1)

2P1 −E1(µjh) +E2(µjh)

=θ∗ − θj +
ε0

2P1 −E1(µjh) +E2(µjh)

≤∆ +
ε0
P1
. (1)

A.7 Additional Results
In Figure 1, we only show the online performance with re-
spect to the ratio 1:10. Here we show other imbalance ratios
in Figure S1 and Figure S2.
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