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Abstract

In this paper, we propose a new online feature selection algo-
rithm for streaming data. We aim to focus on the following
two problems which remain unaddressed in literature. First,
most existing online feature selection algorithms merely uti-
lize the first-order information of the data streams, regardless
of the fact that second-order information explores the corre-
lations between features and significantly improves the per-
formance. Second, most online feature selection algorithms
are based on the balanced data presumption, which is not true
in many real-world applications. For example, in fraud de-
tection, the number of positive examples are much less than
negative examples because most cases are not fraud. The bal-
anced assumption will make the selected features biased to-
wards the majority class and fail to detect the fraud cases. We
propose an Adaptive Sparse Confidence-Weighted (ASCW)
algorithm to solve the aforementioned two problems. We
first introduce an `0-norm constraint into the second-order
confidence-weighted (CW) learning for feature selection.
Then the original loss is substituted with a cost-sensitive loss
function to address the imbalanced data issue. Furthermore,
our algorithm maintains multiple sparse CW learner with the
corresponding cost vector to dynamically select an optimal
cost. We theoretically enhance the theory of sparse CW learn-
ing and analyze the performance behavior in F-measure. Em-
pirical studies show the superior performance over the state-
of-the-art online learning methods in the online-batch setting.

1 Introduction
Online learning typically receives and processes a single
instance at a time. It has become extremely popular and
been employed in many applications such as video-ad allo-
cation (Sumita et al. 2017). In order to deal with high dimen-
sional data streams, online feature selection (OFS) has been
proposed to select a fixed number of features for prediction
by an online learning fashion.

Existing online feature selection algorithms usually apply
the first-order updating rule (Wang et al. 2014; Han et al.
2016). For example, OFS (Wang et al. 2014) modified the
first-order Perceptron (Rosenblatt 1958) algorithm by apply-
ing truncation. However, feature interactions are ignored by
these algorithms. Prior studies in online learning have at-
tested the effectiveness of second-order algorithms, such as
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condence-weighted (CW) learning (Crammer, Dredze, and
Pereira 2009), with a covariance structure exploring the fea-
ture correlations. Due to the high computation cost of co-
variance matrix, very few methods (Tan et al. 2016) have
been advanced for second-order online feature selection.

While class imbalance is prevalent in real-world applica-
tions, it remains to be under-studied in the context of online
feature selection. Current online learning methods usually
combine first-order updating rules with cost-sensitive learn-
ing to deal with class imbalance (Wang, Zhao, and Hoi 2014;
Zhao and Hoi 2013; Yan et al. 2017). In this sense, how
to decide appropriate cost values is the key challenge in
these methods. While most algorithms adopt fixed or ad-hoc
schemes to compute costs from the given data, OMCSL (Yan
et al. 2017) trains a number of classifiers with various costs
and achieves improved performance.

To the best of our knowledge, no previous work has un-
covered the problem of online feature selection with the
presence of class imbalance. Motivated by this, we propose
an Adaptive Sparse CW algorithm (ASCW) for imbalanced
online-batch feature selection. Specifically, our method si-
multaneously maintains multiple sparse CW learners. For
each learner, we assign a unique cost vector to its objective
function. As the online training proceeds, we incrementally
update the target measure for each learner in an online man-
ner. For each online-batch, we choose the best performer for
prediction. The main contributions of our paper are summa-
rized as follows:
• We propose an adaptive sparse CW method for feature

selection on imbalanced online-batch data. Unlike pre-
vious approaches that use a fixed or ad-hoc cost vector,
our method dynamically chooses the best cost from a set
of candidates by incrementally updating the target perfor-
mance for each learner.

• We enhance the theory of the existing sparse CW feature
selection algorithm and analyze the performance behavior
for F-measure.

• Empirical studies demonstrate the efficacy of the pro-
posed algorithm. Further results show that our algorithm
is capable to automatically choose a cost that is suffi-
ciently close to the best one.
The remainder of the paper is organized as follows. We

first briefly review related work and then present the problem



formulation and the cost-sensitive sparse CW algorithm for
imbalanced feature selection. Next, we show how the adap-
tive strategy chooses a cost from candidates and provide the-
oretical analysis. We further discuss our experimental results
and finally, conclude the paper.

2 Related Work
Online learning has been extensively studied in machine
learning community (Crammer et al. 2006; Crammer,
Dredze, and Pereira 2009; Wang, Zhao, and Hoi 2012;
Crammer, Kulesza, and Dredze 2009; Ma et al. 2010; Dong
et al. 2019). First-order algorithms (Crammer et al. 2006;
Zinkevich 2003) usually ignore the direction and scale
of parameter updates. Confidence-weighted (CW) learning
(Crammer, Dredze, and Pereira 2009) addresses this issue
by assuming a Gaussian distribution over weights with mean
µ ∈ Rd and covariance Σ ∈ Rd×d with theoretical guar-
antees in terms of mistake bounds. However, the aggres-
sive update rules based on separable data assumption may
cause over-fitting for noisy data. Adaptive Regularization of
Weights (AROW) (Crammer, Kulesza, and Dredze 2009) re-
laxes such separable assumption by employing a soft-margin
squared hinge loss plus a confidence penalty. As another so-
lution, Soft Confidence-weighted (SCW) (Wang, Zhao, and
Hoi 2012) assigns adaptive margins for different instances.

Cost-sensitive approaches have been proposed to
deal with imbalanced online learning problem, such as
CSOGD (Wang, Zhao, and Hoi 2014), CSOAL (Zhao and
Hoi 2013), and MBPA (Han et al. 2016). They either utilize
PA (Crammer et al. 2006) or OGD (Zinkevich 2003) updat-
ing rules, which only consider the first-order information
and ignore covariance structure. ACOG (Zhao et al. 2018)
adopts the idea of adaptive regularization to incorporate the
second-order information, which is similar to our method.
However, they use ad-hoc cost values computed from the
training instances while we dynamically choose the optimal
cost from a set of candidates.

Many online feature selection methods have been pro-
posed recently (Wu et al. 2013; Zhou et al. 2017; Yu et al.
2014; Wang et al. 2014; Han et al. 2016; Wu et al. 2017;
Tan et al. 2016), most of which are first-order methods. For
example, OFS (Wang et al. 2014) adopts the first-order Per-
ceptron (Rosenblatt 1958) updating rule and MBPA (Han et
al. 2016) utilizes the first-order PA (Crammer et al. 2006)
updating rule. Based on CW learning, (Wu et al. 2017) tries
to incorporate the diagonal elements of the covariance ma-
trix for online feature selection. However, the feature cor-
relations is not fully explored by only using diagonal infor-
mation. Compared with the above methods, we not only ex-
plore feature correlations by incorporating second-order co-
variance structure but also select features that can better fit
the imbalanced measures due to the adaptive cost-selection
strategy.

3 Imbalanced Online-Batch CW Learning
3.1 Notations
We first present some notations. Let superscript T represent
transpose, 0 be a vector/matrix with all zeros, ‖ · ‖p de-

note the lp-norm of a vector, diag(·) be the diagonal matrix,
A � B stand for the element-wise product of A and B, and
I(b) be an indicator function, where I(b) = 1 if b is true
and 0 otherwise. Let [n] = {1, . . . , n}. {Xh,yh} denote ex-
amples received at the h-th iteration, where Xh ∈ Rd×Nh

and yh ∈ {−1, 1}Nh . µh and Σh respectively represent
model weights and covariance at the h-th iteration. We de-
note fh(Xh) : Rd×Nh → RNh as the prediction function at
the h-th iteration and fh = fh(Xh) as the predictions.

3.2 Cost-Sensitive Learning for Imbalanced Data
For traditional confidence-weighted learning (Crammer,
Dredze, and Pereira 2009; Wang, Zhao, and Hoi 2012) and
high-dimensional online feature selection such as (Tan et
al. 2016), the cumulative mistake is optimized by the hinge
loss as: `(µ; (xi, yi)) = max(0, 1 − yiµ

Txi). However,
for imbalanced feature selection, this loss function ignores
cost asymmetry between the majority classes and the mi-
nority ones. Thus, we propose the cost-sensitive loss func-
tion to deal with the imbalanced problem: `c(µ; (xi, yi)) =
c+I(yi = 1)`(µ; (xi, yi)) + c−I(yi = −1)`(µ; (xi, yi)).
Let Di = c+I(yi = 1) + c−I(yi = −1). Then,
`c(µ; (xi, yi)) = Di`(µ; (xi, yi)). Moreover, we also
propose `2c(µ; (xi, yi)) = Di`(µ; (xi, yi))

2 as the cost-
sensitive squared hinge loss.

Thus, how to choose c+ and c− is the key issue for im-
balanced learning. We will describe the choice strategy in
section 5, together with a theoretical analysis in detail.

3.3 Online-Batch CW Learning
Inspired by AROW (Crammer, Kulesza, and Dredze 2009)
and cost-sensitive learning (Wang, Zhao, and Hoi 2014), we
propose an algorithm to estimate µ,Σ at the h-th iteration
for online-batch data.

Fix µ and update Σ. We learn Σ for the following prob-
lem:

min
Σ

DKL(N (µ,Σ)‖N (µh−1,Σh−1)) +
C

2

Nh∑
i=1

xTi Σxi ,

(1)
where DKL := 1

2 log(detΣh−1

detΣ )+ 1
2Tr(Σ−1h−1Σ)+ 1

2 (µh−1−
µ)TΣ−1h−1(µh−1 − µ)− d

2 . Using KKT condition, we have

Σ−1 = Σ−1h−1 + CXhX
T
h . (2)

Fix Σ and update µ. Once we get Σ, we can learn µ by
the following problem:

min
µ

1

2
(µ−µh−1)

TΣ−1
h (µ−µh−1)+

C

q

Nh∑
i=1

Di`(µ; (xi, yi))
q ,

(3)
where q = 1 or 2.

Since Σ is positive semidefinite (PSD), it can be rewritten
as Σ = γ2. We introduce w := γ−1µ, wh−1 := γ−1µh−1
and x̂i := γxi, then problem (3) can be reformulated:

min
w

1

2
‖w −wh−1‖22 +

C

q

Nh∑
i=1

Di`(w; (x̂i, yi))
q . (4)



In order to solve problem (4), we assume an online setting,
i.e., each example comes sequentially from i = 1 to Nh.
This setting is similar to PA (Crammer et al. 2006). Thus we
can come up with the solution as follows:

w = wh−1 + τiyixi , (5)

τi = min(`(w; (x̂i, yi))/‖x̂i‖22, CDi) , for q = 1 ; (6)

τi = `(w; (x̂i, yi))/(‖x̂i‖22 + 1/(2CDi)) , for q = 2 . (7)

4 Sparse CW for Feature Selection
4.1 Feature Selection by Sparsity Index η
The proposed online-batch CW learning algorithm main-
tains the full covariance matrix Σ. It is thus not appro-
priate for very high-dimensional data. In practice, high-
dimensional data often exhibits the property of having many
zero values and only a small number of features are rele-
vant (Ma et al. 2009). Usually, only the relevant features
and their interactions are significant for specific applica-
tions. Based on these observations, we propose the sparse
feature selection algorithm in this section.

In order to find the most relevant features, we introduce an
index vector η = {0, 1}d and apply it to the feature vector x
as (η � x). Here ηj = 1 if feature j is selected and ηj = 0
otherwise. In this situation, hinge loss is expressed as:

`(µ,η; (xi, yi)) = max(0, 1− yiµT (η � xi)) . (8)

Thus `c(µ,η; (xi, yi)) = Di`(µ,η; (xi, yi)).
Considering our aim for feature selection, we impose an

`0-norm constraint on η to induce the sparsity property, i.e.,
‖η‖0 ≤ r (where r � d). In convenience, let Λ := {η|η ∈
{0, 1}d, ‖η‖0 ≤ r} be the set of all candidate η. So there
are |Λ| =

∑r
i=0(di ) feasible η in total, which is exponential.

In the following, we will incorporate η into the online-batch
CW learning and solve it gradually.

At first, as in Section 3.3, we assume µ and η are given,
and solve for Σ. Accordingly, we incorporate η into equa-
tion (1):

min
Σ

DKL(N (µ,Σ)‖N (µh−1,Σh−1))

+
C

2

Nh∑
i=1

(η � xi)
TΣ(η � xi) . (9)

Let Xr
h = diag(η)Xh. Applying the KKT condition on Σ,

the closed form solution is:

Σ(η)−1 = Σ−1h−1 + C(Xr
h)(Xr

h)T . (10)

Once we have Σ(η), we incorporate η into formulation (3)
and obtain the following problem:

min
η∈Λ

min
µ

1

2
(µ− µh−1)TΣh(η)−1(µ− µh−1)

+
C

q

Nh∑
i=1

Di`(µ,η; (xi, yi))
q , (11)

where q = 1 or 2.

Problem (11) is a mixed integer problem including η and
µ, which is hard to solve. Here, we employ the convex re-
laxation proposed in (Tan, Wang, and Tsang 2010) and ap-
ply the KKT condition to transform it into the dual form
as a standard convex problem (detailed development can be
found in Appendix A.1):

max
θ∈R,α∈A

θ , s.t. θ ≤ f(α,η) , ∀η ∈ Λ . (12)

Here, f(α,η) is defined as: f(α,η) =

− 1
2g(α,η)TΣh(η)g(α,η) − (q − 1) α̃

T α̃
2C +

∑Nh

i=1 αi −
µTh−1g(α,η) where g(α,η) :=

∑Nh

i=1 αiyi(η � xi),
α ∈ RNh is the dual variable with regard to equation (8),
∀i ∈ [Nh] andA := {α ∈ RNh |0 ≤ αi ≤ U} is the domain
of α (here, U = CDi for q = 1 and U = ∞ for q = 2). At
last, α̃ = [α1/D

1/2
1 , . . . , αNh

/D
1/2
Nh

].

4.2 Optimization
Problem (12) has exponential number of constraints as∑r
i=0(di ), making it difficult to directly solve. Fortunately,

not all constraints in (12) are active at optimality. Alterna-
tively, we can efficiently solve this problem by cutting plane
algorithm (Kortanek and No 1993), which iteratively gen-
erate a pool of sparse feature subsets to constitute the con-
straints in (12).

Instead of considering all T =
∑r
i=1(di ) constraints, we

iteratively seek an active constraint until some stopping con-
ditions are encountered. Given the previously estimated α,
the most-violated constraint can be found by solving the fol-
lowing problem:

ηt = arg min
η∈Λ

f(α,η)

= arg max
η∈Λ

g(α,η)TΣh(η)g(α,η) + 2µTh−1g(α,η) .

(13)

Let s =
∑Nh

i=1 αiyixi, then g(α,η) = η � s. Problem (13)
can be reformulated:

ηt = arg max
η∈Λ

(sTΣh(η) + 2µTh−1)(η � s) . (14)

Let m = (sTΣh(η)+2µTh−1)�s, then this problem can be
solved by finding the r features with the largest score (e.g.
mj), and setting the corresponding ηj to 1 and the rest to
0. In other words, mj measures the importance of the j-th
feature and acts as the feature score.

After we obtained an active constraint ηt, it can be added
to the active set Λt = Λt−1 ∪ {ηt}, then we can solve the
following subproblem w.r.t constraints defined by Λt:

max
θ∈R,α∈A

θ, s.t. θ ≤ f(α,η), ∀η ∈ Λt . (15)

Problem (14) and (15) are solved alternatively and stop
when: (1) |θt − θt−1|/|θt| ≤ ε, where ε is small tolerance
value; (2) after m = dp/re iterations in order to choose p
features.



4.3 Proximal Dual Coordinate Ascent for
Subproblem (15)

Subproblem (15) regarding dual variable α is hard and ex-
pensive to directly optimize. So in the following, we give a
proximal-dual coordinate ascent based method to efficiently
solve it. Let K = |Λt| be the number of active constraints.
For each constraint ηk ∈ Λt, we take out the corresponding
data, previous model parameter, model parameter and co-
variance matrix w.r.t ηk as: xki ∈ Rr, µh−1k ∈ Rr,µk ∈ Rr
and Σk ∈ Rr×r. Furthermore, let γk be the square root of
Σk, wk := γ−1k µk,w

h−1
k = γ−1k µh−1k , x̂ki = γTk xki . If

we denote w = [wk]Kk=1,wh−1 = [wh−1
k ]Kk=1 and x̂i =

[x̂ki ]Kk=1. The loss function `(w,η; (x̂i, yi)) = max(0, 1 −∑K
k=1 yiw

T
k x̂ki ) = max(0, 1− yiwT x̂i).

The formulation of subproblem (15) is formally similar to
the dual format of some problems. By using KKT condition,
we can obtain the primal form of subproblem (15) (detailed
development can be found in Appendix A.2):

min
w

1

2
(

K∑
k=1

‖wk −wh−1
k ‖)2 +

C

q

Nh∑
i=1

Di`(w,η; (x̂i, yi))
q .

(16)
Problem (16) is non-smooth due to the `22,1-norm regu-
larizer. To make this problem tractable, we make some
modifications and apply a proximal-dual coordinate ascent
method (Shalev-Shwartz and Zhang 2014) to find a nearly
accurate solution of (16) effectively. At first, we introduce a
small regularization term σ

2 ‖w −wh−1‖2 (i.e., σ � 1) and
address the following optimization problem:

min
w

σ

2
‖w −wh−1‖2 +

1

2
(

K∑
k=1

‖wk −wh−1
k ‖)2

+
C

q

Nh∑
i=1

Di`(w,η; (x̂i, yi))
q . (17)

Remark 1. If w∗ is an ε
2 -accurate minimizer of (17) and the

σ we are choosing is sufficiently small, then w∗ is also an ε-
accurate solution of (16) (Shalev-Shwartz and Zhang 2014).
Therefore, the optimal values of problems (16) and (17) are
very close.

Let Ω(w) := σ
2 ‖w−wh−1‖2+ 1

2 (
∑K
k=1 ‖wk−wh−1

k ‖)2,
and Li(w

T x̂i) := 1
qDi`(w,η; (x̂i, yi))

q . Note here Ω is
strongly convex and Li is γ-Lipschitz for some γ > 0. Let
Ω∗(z) = maxw wT z−Ω(w) be the conjugate of Ω(w), and
L∗i be the conjugate of Li. Then we can come up with the
conjugate dual of problem (17) (detailed development can
be found in Appendix A.3):

max
α≥0

H(α) , (18)

where H(α) = −Ω∗(C
∑Nh

i=1 αix̂i)− C
∑Nh

i=1 L
∗
i (−αi).

Following (Shalev-Shwartz and Zhang 2014), we define
z(α) = C

∑Nh

i=1 αix̂i, then w(α) = ∇∗Ω(z(α)). Here,
∇∗Ω(z(α)) denotes the gradient of the conjugate of Ω. Ac-
cording to the property of conjugate, it is also the solution

Algorithm 1 Imbalanced sparse CW in online-batch manner

Require: Parameters C > 0, H, r
Initialize α = 1

Nh
1,µ0 = 0,Σ0 = I.

for h = 1 : H do
Get a batch of data {Xh,yh},where Xh ∈ Rd×Nh

Compute Σh by (10) and γ by eigen-decomposition.
Initialize Λ0 = ∅ and t = 1
while stopping conditions not meet do

Find ηt by solving (14). Let Λt = Λt−1 ∪ ηt.
Compute wh−1

k ,wh−1 according to Λt.
Initialize z = 0,w = wh−1.
for i = 1 : Nh do

Compute Di, x̂
k
i .

Compute loss ` = max(0, 1−
∑K
k=1 yiw

T
k x̂ki ).

if ` > 0 then
Compute αi = min(`/(C‖x̂i‖22), Di) for q =
1 or αi = `/(C‖x̂i‖22 + 0.5/Di) for q = 2.
Compute z = z + Cαix̂i.
Compute w = w +∇∗Ω(z).

end if
end for
Update wh = w, t = t+ 1.

end while
Update µh = γwh.

end for

of Ω∗(z) = maxw wT z− Ω(w).1 Similarly, we assume an
online setting as for problem (4). Finally, we give the full
algorithm for solving the imbalanced feature selection prob-
lem in Algorithm 1.

4.4 Discussions

We emphasize that the proposed algorithm enhances the the-
ory of existing sparse CW (Tan et al. 2016; Wu et al. 2017)
methods. First, with the introduction of cost-sensitive loss
function in section 3.2, we can select features that better fit
the imbalanced measures. Moreover, instead of fixing the
cost, we adaptively choose the best cost from candidates and
theoretically validate the optimality of our selection method
in section 5. Second, in Equation (3) and (11), we employ
µh−1 as the initialization when updating µ, while (Tan et al.
2016) uses 0. Thusµh−1 acts as the warm-start initialization
and further influences on Equation (13) and (14) for solving
ηt. (Tan et al. 2016) assumes Σh(η) to be an identity matrix
when solving for ηt. In fact, it is unclear if this assumption
holds in practice. In contrast, we relax such assumption in
Eq (13) and (14). Particularly, computing ηt reduces to a
simple sorting problem in Eq (14). In intuition, our method
takes more advantages of the information from the previous
online-batch through µh−1 and Σh(η).

1This problem can be efficiently solved using Algorithm2
of (Martins et al. 2011). Due to space limitation, we give the de-
tailed algorithm in Appendix A.4.



Algorithm 2 Multiple Cost-Sensitive Learning.

Require: the number of models K
Initialize M j

1 = 0,µj1 = 0,Σj
1 = I,∀j ∈ [K].

for h = 1 : H do
Get a batch of data {Xh,yh},where Xh ∈ Rd×Nh

Let k = arg maxj=1,...,KM
j
h.

Sample a model µ∗h = µkh.
Predict for a batch of data fh = sign((µ∗h)TXh)
for j = 1, . . . ,K do

Update model µjh and Σj
h by running Algorithm 1.

Compute M j
h+1 according to M j

h,fh, and yh.
end for

end for

5 Multiple Cost-Sensitive Learning

In section 3 and section 4, we propose the cost-sensitive
sparse CW algorithm. However, how to decide the value
of c+ and c− remains an issue. Some previous works use
ad-hoc approaches to set up the values (Wang, Zhao, and
Hoi 2014; Sahoo, Hoi, and Zhao 2016; Zhao and Hoi 2013).
However, there is no guarantee that these approaches can
achieve optimal performance for various imbalanced mea-
sures such as F-measure, AUPRC, and AUROC.

To solve this problem, we propose a strategy which main-
tains multiple cost-sensitive vectors. The motivation is that
if multiple cost vectors c = (c+, c−) is tracked and main-
tained simultaneously, there must exist one setting that can
best fit the data. For convenience, we assume c+ + c− = 1
to eliminate one parameter and thus c+ ∈ (0, 1). In order
to maintain the multiple c+, we divide (0, 1) into K evenly
distributed values θ1, . . . , θK , i.e., θj = j/(K + 1) and set
cj+ = 1− θj/2, then the cost-sensitive loss is denoted as:

`jc(µj ; (xi, yi)) = (1− θj/2)I(yi = 1)`(µj ; (xi, yi))

+ (θj/2)I(yi = −1)`(µj ; (xi, yi)) . (19)

With this strategy, we can maintain and track K
learners with the corresponding costs simultaneously:
(θ1,µ1), . . . , (θK ,µK). At the h-th online-batch, we up-
date the current target measure of the j-th learner, denoted
by M j

h. Different from (Yan et al. 2017), we apply the
greedy criterion to select the best performer according to
{M1

h , ...,M
K
h } from K candidates for prediction at the h-th

online-batch. With this criterion, we do not need to introduce
extra hyper-parameter, and we can analyze the performance
guarantee in a different way.

We update the target measures (e.g., F-measure, AUROC,
and AUPRC) only using the current measure M j

h, current
predictions fh, and labels yh, which is efficient without stor-
ing all fh and yh. Due to the space limitation, we put the
detailed updating formulations in Appendix A.5. We sum-
marize the multiple cost-sensitive algorithm in Algorithm 2.

5.1 Theoretical Analysis in F-measure
we define the following notations for binary classification:

a(θ) = [1− θ

2
,
θ

2
] and ∆ =

θj − θj+1

2
=

1

2K
,

P1 : the marginal probability of the positive instances ,
E(h) = [fn, fp] : false negative and false positive ,
F ∗ = max

e
F (e) : the maximum F-measure ,

F (µ) : the F-measure achieved by µ .

Proposition 1. Assume that {µ1
h, ...,µ

K
h } minimizes the

cost-sensitive loss to a certain degree, then the F-measure
achieved by Algorithm 2 has the following lower bound as
long as h increases:

max
j=1,...,K

F (µjh) ≥ F ∗ −∆− ε0
P1

,

where k = arg maxj=1,...,K F (µjh) and 〈a(θk),E(µkh)〉 ≤
minµ〈a(θk),E(µ)〉+ε0. The full proof is in Appendix A.6.

6 Experiments
In this section, we evaluate the proposed ASCW algorithm
on three imbalanced measures, i.e., F-measure, AUROC,
and AUPRC and compare with various online learning and
feature selection methods.

6.1 Experimental Testbed
We conduct experiments on three widely-used high-
dimensional benchmarks and sample with different ratios
to construct nine imbalance configurations, as shown in Ta-
ble 1. In order to construct imbalanced configurations from
the original datasets, we adopt two strategies. Firstly, for bi-
nary datasets (real-sim and rcv1), we fix the negative class
and sample from the positive class to satisfy specific ratios
(1:5, 1:10 and 1:20). Secondly, for the multi-class dataset
(news20), we set class1 as positive class and select class2-6,
class2-11 and class2-20 as negative class respectively.

Table 1: Datasets Statistics

Datasets d Ntrain
# nonzeros
per example #Pos:#Neg

real-sim 20,958 32,309 52 1:5, 1:10, 1:20
rcv1 47,236 20,242 74 1:5, 1:10, 1:20

news20 62,061 15,935 80 1:5, 1:10, 1:19

6.2 Comparison Algorithms
We compare the following algorithms:

• OFS (Wang et al. 2014): The state-of-the-art first-order
online feature selection via sparse projection.

• MBPA (Han et al. 2016): Margin-based passive aggres-
sive method for online feature selection.

• CSOAL (Zhao and Hoi 2013): A cost-sensitive online ac-
tive learning method.
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Figure 1: Online performance with imbalance ration 1:10 (other ratios in Appendix A.7) for different performance measures

• SBCW1 and SBCW2 (Tan et al. 2016): Two variations of
the sparse online-batch feature selection method.

• FGM (Tan, Tsang, and Wang 2014): The full-batch high-
dimensional feature selection method which generates a
pool of violated sparse feature subsets and combines them
via efficient Multiple Kernel Learning (MKL) algorithm.

• L1SVM (Yuan et al. 2010): `1-norm SVM by Liblinear.
• ASCW1 and ASCW2: The proposed algorithm with

hinge (q = 1) and squared hinge (q = 2) loss.
SBCW and ASCW consider second-order structure while
others only optimize first-order information.

6.3 Experimental Results
As shown in Table 1, the number of nonzeros per exam-
ple varies from 52 to 80 in different datasets, so in the ex-
periments we set the selected feature dimension to 50 for
all algorithms except that for CSOAL we set query ratio
to be 1%.2 Following (Hoi, Wang, and Zhao 2014), we re-
peat all online learning experiments 20 times with random
permutation of training data. For full batch methods (FGM,
L1SVM), we follow the default settings.

Batch Size. In Algorithm 1, µ is updated in a pure on-
line manner and Σ is updated in an online-batch manner. To
explain the necessity of the online-batch update and explore
proper batch size, we perform experiments on news20 with
various batch sizes, as shown in Table 2. The best perfor-
mance is achieved with batch size=1 (the strict online case).

2Actually, 1% of all examples contain more information than
50 features of entire features for all datasets.

Table 2: Test performance on news20 with various batch
sizes

Ratio Batch news20
F AUROC AUPRC Time (s)

1:5
256 0.5614 0.8474 0.6011 0.71
64 0.5640 0.8536 0.6163 2.40
1 0.9125 0.9922 0.9769 913.86

1:10
256 0.4239 0.8114 0.4306 1.39
64 0.4275 0.8096 0.4309 4.53
1 0.8549 0.9872 0.9479 3034.95

1:19
256 0.3349 0.8223 0.3126 2.86
64 0.3031 0.7952 0.2867 9.63
1 0.8080 0.9796 0.9068 13950.78

However, the time cost is unbearable. The performance of
batch size=256 is close to that of 64, but 256 is 3∼4 times
faster. We thus set batch size=256 in remaining experiments.

Online Performance. To compare the online perfor-
mances, we evaluate three measures on all datasets. The re-
sults of ratio 1:10 are shown in Figure 1. It can be seen that
ASCW outperforms all other methods when the number of
samples increases. Moreover, the F-measure of ASCW out-
performs all other methods with a large margin.

Test Performance. We report the test performances of all
algorithms under different imbalance ratios in Table 3. It is
observed that ASCW outperforms all other algorithms on
most settings for the three performance measures. Also, the
improvements of ASCW on F-measure are higher than that
on AUROC and AUPRC.

We attribute the good online and test performance of



Table 3: Average test performance over models trained on 20 random data permutations

Ratio Methods real-sim rcv1 news20
F-measure AUROC AUPRC F-measure AUROC AUPRC F-measure AUROC AUPRC

1:5

OFS 0.0279 0.8943 0.5707 0.0215 0.8207 0.5212 0.3744 0.7706 0.4919
MBPA 0.3742 0.8435 0.6886 0.3404 0.8365 0.6646 0.3193 0.7239 0.3930

CSOAL 0.6248 0.9163 0.6868 0.6366 0.9183 0.7203 0.3579 0.5915 0.3597
FGM 0.5334 0.9103 0.7366 0.4115 0.7235 0.4381 0.2754 0.5930 0.2411

L1SVM 0.4501 0.9127 0.6892 0.5552 0.8906 0.7308 0.4135 0.8028 0.5664
SBCW1 0.3778 0.9295 0.7161 0.4156 0.8913 0.7083 0.4115 0.7934 0.5298
SBCW2 0.4363 0.9390 0.7357 0.4078 0.9056 0.7255 0.4703 0.8122 0.5474
ASCW1 0.7036 0.9434 0.7395 0.6409 0.9185 0.7398 0.5614 0.8474 0.6011
ASCW2 0.6948 0.9464 0.7521 0.6355 0.9312 0.7887 0.5698 0.8529 0.6095

1:10

OFS 0.0021 0.8537 0.2964 0.0001 0.7794 0.2480 0.2237 0.7139 0.2928
MBPA 0.2394 0.8203 0.5564 0.2085 0.7505 0.4509 0.2096 0.7203 0.2618

CSOAL 0.3931 0.8801 0.4528 0.4342 0.8869 0.5051 0.2526 0.6013 0.2567
FGM 0.3580 0.9071 0.6279 0.2968 0.7565 0.3432 0.1942 0.6078 0.1450

L1SVM 0.0816 0.8655 0.3473 0.2830 0.8485 0.4968 0.3986 0.7636 0.4056
SBCW1 0.0710 0.8994 0.3778 0.3510 0.8767 0.5557 0.3193 0.7198 0.2895
SBCW2 0.1241 0.9173 0.4273 0.3906 0.8990 0.6016 0.3063 0.7235 0.2821
ASCW1 0.5621 0.9422 0.5914 0.5649 0.9060 0.5880 0.4239 0.8114 0.4306
ASCW2 0.5662 0.9457 0.6073 0.6005 0.9190 0.6252 0.4312 0.8188 0.4341

1:20 (1:19)

OFS 0.0041 0.8295 0.1559 0.0000 0.7623 0.1191 0.1525 0.7160 0.1969
MBPA 0.1144 0.7578 0.3941 0.1231 0.7129 0.3170 0.1283 0.7419 0.2017

CSOAL 0.2128 0.8156 0.1776 0.2386 0.8512 0.2856 0.2570 0.6519 0.2358
FGM 0.1827 0.8660 0.4540 0.1761 0.7224 0.2055 0.1622 0.6981 0.1282

L1SVM 0.0000 0.8223 0.1264 0.0000 0.8310 0.2264 0.3154 0.7499 0.2991
SBCW1 0.0554 0.8678 0.1947 0.2422 0.8508 0.3668 0.2538 0.7328 0.2161
SBCW2 0.0802 0.9069 0.2466 0.2857 0.8726 0.4404 0.2455 0.7427 0.1964
ASCW1 0.3893 0.9178 0.4803 0.4565 0.9042 0.5189 0.3349 0.8223 0.3126
ASCW2 0.4236 0.9372 0.4582 0.5081 0.9078 0.5073 0.3245 0.8173 0.2937

Table 4: Average estimated error of cost ĉ+ by Algorithm 2 and optimal cost c∗+.

Ratio Methods real-sim rcv1 news20
F-measure AUROC AUPRC F-measure AUROC AUPRC F-measure AUROC AUPRC

1:5 ASCW1 0.0008 0.0000 0.0000 0.0090 0.0032 0.0021 0.0073 0.0058 0.0140
ASCW2 0.0056 0.0031 0.0078 0.0082 0.0208 0.0345 0.0198 0.0020 0.0103

1:10 ASCW1 0.0000 0.0006 0.0014 0.0014 0.0084 0.0201 0.0006 0.0017 0.0119
ASCW2 0.0071 0.0006 0.0040 0.0111 0.0235 0.0117 0.0033 0.0069 0.0233

1:20 (1:19) ASCW1 0.0000 0.0000 0.0000 0.0542 0.0076 0.0354 0.0069 0.0024 0.0089
ASCW2 0.0000 0.0023 0.0011 0.0357 0.0345 0.0501 0.0107 0.0019 0.0148

ASCW to two main reasons. First, our algorithm is capable
of selecting a close-to-optimal cost vector [c+, c−], which
makes it perform better on imbalanced measures. Moreover,
there is a theoretical guarantee on the lower bound of F-
measure. It explains the higher improvements of F-measure
compared with AURROC and AUPRC. Second, our algo-
rithm employs covariance structure that can better capture
the interplays among features to find more effective features.

6.4 Optimal Cost Vector
In preposition 1, we theoretically analyze the lower-bound
of the F-measure achieved by Algorithm 2. In order to quan-
titatively verify that our algorithm can choose near to op-
timal cost vector [c+, c−], we perform cost-sensitive fea-
ture selection by Algorithm 1 with costs vary among c+ =
{0.55, 0.60, . . . , 0.95} and choose the best cost according
to overall online performance, denoted by c∗+. To compare
our selected cost with the best performance cost, we average

c+ sampled in Algorithm 2 in the last 20 iterations (>5000
examples) as an estimation of the best cost, denoted as ĉ+.
Then we compute the estimated errors as: |c∗+ − ĉ+| and
present the results on Table 4. We can observe that the es-
timated errors of our algorithm and the optimal one is very
close with the search length of 0.05, thus verifying the accu-
rate estimation of our algorithm for the optimal cost.

7 Conclusion
Many real-world applications process data in an online-
batch manner and suffer from the skewed distribution. In this
paper, we propose an adaptive sparse CW algorithm to deal
with the feature selection problem on imbalanced online-
batch data. Our algorithm simultaneously learns multiple
base classifiers with their own costs. With the data comes
sequentially in each online-batch, the aimed measure is up-
dated incrementally for each classifier in an online-batch
manner. Among all the classifiers, we choose the one with



the best performance for prediction. We theoretically en-
hance the theory of the existing sparse CW feature selection
algorithm and analyze the performance behavior regarding
F-measure. Experimental results show the superior perfor-
mance of ASCW and its ability for selecting the satisfactory
cost vector.
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